IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v106y2022ics0305048321001468.html
   My bibliography  Save this article

Robust tactical qualification decisions in flexible manufacturing systems

Author

Listed:
  • Perraudat, Antoine
  • Dauzère-Pérès, Stéphane
  • Vialletelle, Philippe

Abstract

In some flexible manufacturing systems, such as semiconductor manufacturing systems, machines must be qualified, i.e. certified and eligible, to process a product. This paper investigates a tactical capacity planning problem that consists in minimizing the number of (product, machine) qualifications to ensure that the manufacturing system is robust against the uncertainty on the product mix. First, we propose a deterministic modeling of the problem, followed by a robust modeling based on the robust optimization paradigm when demand uncertainty is characterized by product cannibalization. Then, a mathematical model, also based on the robust optimization paradigm, to characterize the robustness of a set of qualifications is introduced. Finally, in the computational study on industrial data, we show that the price of uncertainty is small, often less than a few additional qualifications by machine whereas the robustness of the qualifications determined for the nominal product mix often lead to capacity constraint violations. We also show that a restricted number of new relevant qualifications out of all possible new qualifications is required to achieve the same robustness as the case where all new qualifications are performed. Considering demand uncertainty in qualification management is therefore critical since robustness is relatively cheap.

Suggested Citation

  • Perraudat, Antoine & Dauzère-Pérès, Stéphane & Vialletelle, Philippe, 2022. "Robust tactical qualification decisions in flexible manufacturing systems," Omega, Elsevier, vol. 106(C).
  • Handle: RePEc:eee:jomega:v:106:y:2022:i:c:s0305048321001468
    DOI: 10.1016/j.omega.2021.102537
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048321001468
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2021.102537?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antoine Désir & Vineet Goyal & Yehua Wei & Jiawei Zhang, 2016. "Sparse Process Flexibility Designs: Is the Long Chain Really Optimal?," Operations Research, INFORMS, vol. 64(2), pages 416-431, April.
    2. Fiorotto, Diego Jacinto & Jans, Raf & Alexandre de Araujo, Silvio, 2018. "Process flexibility and the chaining principle in lot sizing problems," International Journal of Production Economics, Elsevier, vol. 204(C), pages 244-263.
    3. H. Müge Yayla‐Küllü & Jennifer K. Ryan & Jayashankar M. Swaminathan, 2021. "Product Line Flexibility for Agile and Adaptable Operations," Production and Operations Management, Production and Operations Management Society, vol. 30(3), pages 725-737, March.
    4. Bo Liao & Candace Arai Yano & Shiva Esturi, 2017. "Optimizing Site Qualification Across the Supply Network at Western Digital," Interfaces, INFORMS, vol. 47(4), pages 305-319, August.
    5. Timothy C. Y. Chan & Douglas Fearing, 2019. "Process Flexibility in Baseball: The Value of Positional Flexibility," Management Science, INFORMS, vol. 65(4), pages 1642-1666, April.
    6. Frans J. C. T. Ruiter & Aharon Ben-Tal & Ruud C. M. Brekelmans & Dick Hertog, 2017. "Robust optimization of uncertain multistage inventory systems with inexact data in decision rules," Computational Management Science, Springer, vol. 14(1), pages 45-66, January.
    7. Mengying Fu & Ronald Askin & John Fowler & Muhong Zhang, 2015. "Stochastic optimization of product–machine qualification in a semiconductor back-end facility," IISE Transactions, Taylor & Francis Journals, vol. 47(7), pages 739-750, July.
    8. Yanıkoğlu, İhsan & Gorissen, Bram L. & den Hertog, Dick, 2019. "A survey of adjustable robust optimization," European Journal of Operational Research, Elsevier, vol. 277(3), pages 799-813.
    9. William C. Jordan & Stephen C. Graves, 1995. "Principles on the Benefits of Manufacturing Process Flexibility," Management Science, INFORMS, vol. 41(4), pages 577-594, April.
    10. Tianhu Deng & Zuo-Jun Max Shen, 2013. "Process Flexibility Design in Unbalanced Networks," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 24-32, April.
    11. Mabel C. Chou & Geoffrey A. Chua & Chung-Piaw Teo & Huan Zheng, 2010. "Design for Process Flexibility: Efficiency of the Long Chain and Sparse Structure," Operations Research, INFORMS, vol. 58(1), pages 43-58, February.
    12. K. Sridhar Moorthy & I. P. L. Png, 1992. "Market Segmentation, Cannibalization, and the Timing of Product Introductions," Management Science, INFORMS, vol. 38(3), pages 345-359, March.
    13. de Ruiter, Frans & Brekelmans, Ruud & den Hertog, Dick, 2016. "The impact of the existence of multiple adjustable robust solutions," Other publications TiSEM eabf3802-3965-40ef-b26d-f, Tilburg University, School of Economics and Management.
    14. Stephen C. Graves & Brian T. Tomlin, 2003. "Process Flexibility in Supply Chains," Management Science, INFORMS, vol. 49(7), pages 907-919, July.
    15. Gorissen, Bram L. & Yanıkoğlu, İhsan & den Hertog, Dick, 2015. "A practical guide to robust optimization," Omega, Elsevier, vol. 53(C), pages 124-137.
    16. Cong Shi & Yehua Wei & Yuan Zhong, 2019. "Process Flexibility for Multiperiod Production Systems," Operations Research, INFORMS, vol. 67(5), pages 1300-1320, September.
    17. Xi Chen & Tengyu Ma & Jiawei Zhang & Yuan Zhou, 2019. "Optimal Design of Process Flexibility for General Production Systems," Operations Research, INFORMS, vol. 67(2), pages 516-531, March.
    18. M. W. P. Savelsbergh, 1994. "Preprocessing and Probing Techniques for Mixed Integer Programming Problems," INFORMS Journal on Computing, INFORMS, vol. 6(4), pages 445-454, November.
    19. Zhenzhen Yan & Sarah Yini Gao & Chung Piaw Teo, 2018. "On the Design of Sparse but Efficient Structures in Operations," Management Science, INFORMS, vol. 64(7), pages 3421-3445, July.
    20. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    21. Robert M. Nauss, 2003. "Solving the Generalized Assignment Problem: An Optimizing and Heuristic Approach," INFORMS Journal on Computing, INFORMS, vol. 15(3), pages 249-266, August.
    22. Rowshannahad, M. & Dauzère-Pérès, S. & Cassini, B., 2015. "Capacitated qualification management in semiconductor manufacturing," Omega, Elsevier, vol. 54(C), pages 50-59.
    23. Dimitris Bertsimas & Aurélie Thiele, 2006. "A Robust Optimization Approach to Inventory Theory," Operations Research, INFORMS, vol. 54(1), pages 150-168, February.
    24. Xuan Wang & Jiawei Zhang, 2015. "Process Flexibility: A Distribution-Free Bound on the Performance of k -Chain," Operations Research, INFORMS, vol. 63(3), pages 555-571, June.
    25. Li, Jianbin & Luo, Xiaomeng & Wang, Qifei & Zhou, Weihua, 2021. "Supply chain coordination through capacity reservation contract and quantity flexibility contract," Omega, Elsevier, vol. 99(C).
    26. Kim, Kilsun & Chhajed, Dilip, 2000. "Commonality in product design: Cost saving, valuation change and cannibalization," European Journal of Operational Research, Elsevier, vol. 125(3), pages 602-621, September.
    27. Atamturk, Alper & Nemhauser, George L. & Savelsbergh, Martin W. P., 2000. "Conflict graphs in solving integer programming problems," European Journal of Operational Research, Elsevier, vol. 121(1), pages 40-55, February.
    28. Boyer, Kenneth K. & Leong, G. Keong, 1996. "Manufacturing flexibility at the plant level," Omega, Elsevier, vol. 24(5), pages 495-510, October.
    29. Christ, Quentin & Dauzère-Pérès, Stéphane & Lepelletier, Guillaume, 2019. "An Iterated Min–Max procedure for practical workload balancing on non-identical parallel machines in manufacturing systems," European Journal of Operational Research, Elsevier, vol. 279(2), pages 419-428.
    30. Dan A. Iancu & Nikolaos Trichakis, 2014. "Pareto Efficiency in Robust Optimization," Management Science, INFORMS, vol. 60(1), pages 130-147, January.
    31. David Simchi-Levi & Yehua Wei, 2012. "Understanding the Performance of the Long Chain and Sparse Designs in Process Flexibility," Operations Research, INFORMS, vol. 60(5), pages 1125-1141, October.
    32. Xu, He & Zuo, Xiaolu & Liu, Zhixue, 2015. "Configuration of flexibility strategies under supply uncertainty," Omega, Elsevier, vol. 51(C), pages 71-82.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriel Amaro & Diego Jacinto Fiorotto & Washington Alves Oliveira, 2023. "Impact analysis of flexibility on the integrated lot sizing and supplier selection problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 236-266, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timothy C. Y. Chan & Daniel Letourneau & Benjamin G. Potter, 2022. "Sparse flexible design: a machine learning approach," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 1066-1116, December.
    2. Zhen Xu & Hailun Zhang & Jiheng Zhang & Rachel Q. Zhang, 2020. "Online Demand Fulfillment Under Limited Flexibility," Management Science, INFORMS, vol. 66(10), pages 4667-4685, October.
    3. Shixin Wang & Xuan Wang & Jiawei Zhang, 2021. "A Review of Flexible Processes and Operations," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1804-1824, June.
    4. Rujeerapaiboon, Napat & Zhong, Yuanguang & Zhu, Dan, 2023. "Resilience of long chain under disruption," European Journal of Operational Research, Elsevier, vol. 309(2), pages 597-615.
    5. Arash Asadpour & Xuan Wang & Jiawei Zhang, 2020. "Online Resource Allocation with Limited Flexibility," Management Science, INFORMS, vol. 66(2), pages 642-666, February.
    6. Jingui Xie & Yiming Fan & Mabel C. Chou, 2017. "Flexibility design in loss and queueing systems: efficiency of k-chain configuration," Flexible Services and Manufacturing Journal, Springer, vol. 29(2), pages 286-308, June.
    7. Cong Shi & Yehua Wei & Yuan Zhong, 2019. "Process Flexibility for Multiperiod Production Systems," Operations Research, INFORMS, vol. 67(5), pages 1300-1320, September.
    8. Xi Chen & Tengyu Ma & Jiawei Zhang & Yuan Zhou, 2019. "Optimal Design of Process Flexibility for General Production Systems," Operations Research, INFORMS, vol. 67(2), pages 516-531, March.
    9. Timothy C. Y. Chan & Douglas Fearing, 2019. "Process Flexibility in Baseball: The Value of Positional Flexibility," Management Science, INFORMS, vol. 65(4), pages 1642-1666, April.
    10. Xi Chen & Jiawei Zhang & Yuan Zhou, 2015. "Optimal Sparse Designs for Process Flexibility via Probabilistic Expanders," Operations Research, INFORMS, vol. 63(5), pages 1159-1176, October.
    11. Antoine Désir & Vineet Goyal & Yehua Wei & Jiawei Zhang, 2016. "Sparse Process Flexibility Designs: Is the Long Chain Really Optimal?," Operations Research, INFORMS, vol. 64(2), pages 416-431, April.
    12. Zhenzhen Yan & Sarah Yini Gao & Chung Piaw Teo, 2018. "On the Design of Sparse but Efficient Structures in Operations," Management Science, INFORMS, vol. 64(7), pages 3421-3445, July.
    13. Verma, Nishant Kumar & Chatterjee, Ashish K., 2023. "Process flexibility in the presence of product modularity: Does modularity help?," International Journal of Production Economics, Elsevier, vol. 256(C).
    14. Xuan Wang & Jiawei Zhang, 2015. "Process Flexibility: A Distribution-Free Bound on the Performance of k -Chain," Operations Research, INFORMS, vol. 63(3), pages 555-571, June.
    15. Guodong Lyu & Wang-Chi Cheung & Mabel C. Chou & Chung-Piaw Teo & Zhichao Zheng & Yuanguang Zhong, 2019. "Capacity Allocation in Flexible Production Networks: Theory and Applications," Management Science, INFORMS, vol. 65(11), pages 5091-5109, November.
    16. Philip Kaminsky & Yang Wang, 2019. "Multi-period process flexibility with inventory," Flexible Services and Manufacturing Journal, Springer, vol. 31(4), pages 833-893, December.
    17. Henao, César Augusto & Ferrer, Juan Carlos & Muñoz, Juan Carlos & Vera, Jorge, 2016. "Multiskilling with closed chains in a service industry: A robust optimization approach," International Journal of Production Economics, Elsevier, vol. 179(C), pages 166-178.
    18. Dipankar Bose & A. K. Chatterjee & Samir Barman, 2016. "Towards dominant flexibility configurations in strategic capacity planning under demand uncertainty," OPSEARCH, Springer;Operational Research Society of India, vol. 53(3), pages 604-619, September.
    19. Shixin Wang, 2023. "The Power of Simple Menus in Robust Selling Mechanisms," Papers 2310.17392, arXiv.org.
    20. Mengshi Lu & Zuo‐Jun Max Shen, 2021. "A Review of Robust Operations Management under Model Uncertainty," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1927-1943, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:106:y:2022:i:c:s0305048321001468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.