Advanced Search
MyIDEAS: Login

Convergence of the Least Squares Monte Carlo Approach to American Option Valuation


Author Info

  • Lars Stentoft

    (School of Economics and Management, University of Aarhus, 322 University Park, DK-8000 Aarhus C, Denmark)


In a recent paper, Longstaff and Schwartz (2001) suggest a method to American option valuation based on simulation. The method is termed the Least Squares Monte Carlo (LSM) method, and although it has become widely used, not much is known about the properties of the estimator. This paper corrects this shortcoming using theory from the literature on seminonparametric series estimators. A central part of the LSM method is the approximation of a set of conditional expectation functions. We show that the approximations converge to the true expectation functions under general assumptions in a multiperiod, multidimensional setting. We obtain convergence rates in the two-period, multidimensional case, and we discuss the relation between the optimal rate of convergence and the properties of the conditional expectation. Furthermore, we show that the actual price estimates converge to the true price. This provides the mathematical foundation for the use of the LSM method in derivatives research.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL:
Download Restriction: no

Bibliographic Info

Article provided by INFORMS in its journal Management Science.

Volume (Year): 50 (2004)
Issue (Month): 9 (September)
Pages: 1193-1203

as in new window
Handle: RePEc:inm:ormnsc:v:50:y:2004:i:9:p:1193-1203

Contact details of provider:
Postal: 7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA
Phone: +1-443-757-3500
Fax: 443-757-3515
Web page:
More information through EDIRC

Related research

Keywords: American options; Monte Carlo methods; least squares regression;


No references listed on IDEAS
You can help add them by filling out this form.


Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.


This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


Access and download statistics


When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:50:y:2004:i:9:p:1193-1203. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.