IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v34y2004i6p415-425.html
   My bibliography  Save this article

Optimizing Military Capital Planning

Author

Listed:
  • Gerald G. Brown

    (Operations Research Department, Naval Postgraduate School, Monterey, California 93943)

  • Robert F. Dell

    (Operations Research Department, Naval Postgraduate School, Monterey, California 93943)

  • Alexandra M. Newman

    (Division of Economics and Business, Colorado School of Mines, Golden, Colorado 80401)

Abstract

Planning United States military procurement commits a significant portion of our nation's wealth and determines our ability to defend ourselves, our allies, and our principles over the long term. Our military pioneered and has long used mathematical optimization to unravel the distinguishing complexities of military capital planning. The succession of mathematical optimization models we present exhibits increasingly detailed features; such embellishments are always needed for real-world, long-term procurement decision models. Two case studies illustrate practical modeling tricks that are useful in helping decision makers decide how to spend about a trillion dollars.

Suggested Citation

  • Gerald G. Brown & Robert F. Dell & Alexandra M. Newman, 2004. "Optimizing Military Capital Planning," Interfaces, INFORMS, vol. 34(6), pages 415-425, December.
  • Handle: RePEc:inm:orinte:v:34:y:2004:i:6:p:415-425
    DOI: 10.1287/inte.1040.0107
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.1040.0107
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.1040.0107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrew G. Loerch, 1999. "Incorporating learning curve costs in acquisition strategy optimization," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(3), pages 255-271, April.
    2. James H. Lorie & Leonard J. Savage, 1955. "Three Problems in Rationing Capital," The Journal of Business, University of Chicago Press, vol. 28, pages 229-229.
    3. Gerald G. Brown & Robert F. Dell & R. Kevin Wood, 1997. "Optimization and Persistence," Interfaces, INFORMS, vol. 27(5), pages 15-37, October.
    4. Gerald G. Brown & Robert F. Dell & Heath Holtz & Alexandra M. Newman, 2003. "How US Air Force Space Command Optimizes Long-Term Investment in Space Systems," Interfaces, INFORMS, vol. 33(4), pages 1-14, August.
    5. Gerald G. Brown & Robert D. Clemence & William R. Teufert & R. Kevin Wood, 1991. "An Optimization Model for Modernizing the Army's Helicopter Fleet," Interfaces, INFORMS, vol. 21(4), pages 39-52, August.
    6. Bernhard, Richard H., 1969. "Mathematical Programming Models for Capital Budgeting—A Survey, Generalization, and Critique*," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 4(2), pages 111-158, June.
    7. John W. Mamer & Andrew W. Shogan, 1987. "A Constrained Capital Budgeting Problem with Applications to Repair Kit Selection," Management Science, INFORMS, vol. 33(6), pages 800-806, June.
    8. Hugh Everett, 1963. "Generalized Lagrange Multiplier Method for Solving Problems of Optimum Allocation of Resources," Operations Research, INFORMS, vol. 11(3), pages 399-417, June.
    9. Robert A. Bailey, 1953. "Application of Operations-Research Techniques to Airborne Weapon System Planning," Operations Research, INFORMS, vol. 1(4), pages 187-199, August.
    10. Weingartner, H Martin, 1977. "Capital Rationing: n Authors in Search of a Plot," Journal of Finance, American Finance Association, vol. 32(5), pages 1403-1431, December.
    11. Paul Gunther, 1955. "Letter to the Editor---Use of Linear Programming in Capital Budgeting," Operations Research, INFORMS, vol. 3(2), pages 219-224, May.
    12. Gregory S. Parnell & Harry W. Conley & Jack A. Jackson & Lee J. Lehmkuhl & John M. Andrew, 1998. "Foundations 2025: A Value Model for Evaluating Future Air and Space Forces," Management Science, INFORMS, vol. 44(10), pages 1336-1350, October.
    13. H. Martin Weingartner, 1966. "Capital Budgeting of Interrelated Projects: Survey and Synthesis," Management Science, INFORMS, vol. 12(7), pages 485-516, March.
    14. Helga Meier & Nicos Christofides & Gerry Salkin, 2001. "Capital Budgeting Under Uncertainty---An Integrated Approach Using Contingent Claims Analysis and Integer Programming," Operations Research, INFORMS, vol. 49(2), pages 196-206, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rempel, M. & Cai, J., 2021. "A review of approximate dynamic programming applications within military operations research," Operations Research Perspectives, Elsevier, vol. 8(C).
    2. Kangaspunta, Jussi & Liesiö, Juuso & Salo, Ahti, 2012. "Cost-efficiency analysis of weapon system portfolios," European Journal of Operational Research, Elsevier, vol. 223(1), pages 264-275.
    3. Andrew Lim & Fan Wang & Zhou Xu, 2006. "A Transportation Problem with Minimum Quantity Commitment," Transportation Science, INFORMS, vol. 40(1), pages 117-129, February.
    4. David L. Alderson & Gerald G. Brown & W. Matthew Carlyle, 2015. "Operational Models of Infrastructure Resilience," Risk Analysis, John Wiley & Sons, vol. 35(4), pages 562-586, April.
    5. Michael D. Teter & Johannes O. Royset & Alexandra M. Newman, 2019. "Modeling uncertainty of expert elicitation for use in risk-based optimization," Annals of Operations Research, Springer, vol. 280(1), pages 189-210, September.
    6. Gerald G. Brown & Richard E. Rosenthal, 2008. "Optimization Tradecraft: Hard-Won Insights from Real-World Decision Support," Interfaces, INFORMS, vol. 38(5), pages 356-366, October.
    7. Liesiö, Juuso & Punkka, Antti, 2014. "Baseline value specification and sensitivity analysis in multiattribute project portfolio selection," European Journal of Operational Research, Elsevier, vol. 237(3), pages 946-956.
    8. Barbati, Maria & Greco, Salvatore & Kadziński, Miłosz & Słowiński, Roman, 2018. "Optimization of multiple satisfaction levels in portfolio decision analysis," Omega, Elsevier, vol. 78(C), pages 192-204.
    9. Hunkar Toyoglu & Oya Ekin Karasan & Bahar Yetis Kara, 2011. "Distribution network design on the battlefield," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(3), pages 188-209, April.
    10. Alexander J. Zolan & Michael S. Scioletti & David P. Morton & Alexandra M. Newman, 2021. "Decomposing Loosely Coupled Mixed-Integer Programs for Optimal Microgrid Design," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1300-1319, October.
    11. Phillips, Lawrence D. & Bana e Costa, Carlos A., 2005. "Transparent prioritisation, budgeting and resource allocation with multi-criteria decision analysis and decision conferencing," LSE Research Online Documents on Economics 22742, London School of Economics and Political Science, LSE Library.
    12. Lawrence Phillips & Carlos Bana e Costa, 2007. "Transparent prioritisation, budgeting and resource allocation with multi-criteria decision analysis and decision conferencing," Annals of Operations Research, Springer, vol. 154(1), pages 51-68, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrizia Beraldi & Maria Bruni & Antonio Violi, 2012. "Capital rationing problems under uncertainty and risk," Computational Optimization and Applications, Springer, vol. 51(3), pages 1375-1396, April.
    2. D. Babusiaux, 1988. "Financing investment and calculations of profitability [Financement des investissements et calculs de rentabilité]," Working Papers hal-01534450, HAL.
    3. Tobin, Roger L., 2002. "Relief period optimization under budget constraints," European Journal of Operational Research, Elsevier, vol. 139(1), pages 42-61, May.
    4. Gerald G. Brown & Robert F. Dell & Heath Holtz & Alexandra M. Newman, 2003. "How US Air Force Space Command Optimizes Long-Term Investment in Space Systems," Interfaces, INFORMS, vol. 33(4), pages 1-14, August.
    5. Freville, Arnaud, 2004. "The multidimensional 0-1 knapsack problem: An overview," European Journal of Operational Research, Elsevier, vol. 155(1), pages 1-21, May.
    6. Wilbaut, Christophe & Salhi, Saïd & Hanafi, Saïd, 2009. "An iterative variable-based fixation heuristic for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 199(2), pages 339-348, December.
    7. Tobin, Roger L., 1999. "A fast interactive solution method for large capital expenditure selection problems," European Journal of Operational Research, Elsevier, vol. 116(1), pages 1-15, July.
    8. Gupta, Renu & Bandopadhyaya, Lakshmisree & Puri, M. C., 1996. "Ranking in quadratic integer programming problems," European Journal of Operational Research, Elsevier, vol. 95(1), pages 231-236, November.
    9. Feng Yang & Shiling Song & Wei Huang & Qiong Xia, 2015. "SMAA-PO: project portfolio optimization problems based on stochastic multicriteria acceptability analysis," Annals of Operations Research, Springer, vol. 233(1), pages 535-547, October.
    10. Crama, Yves, 1997. "Combinatorial optimization models for production scheduling in automated manufacturing systems," European Journal of Operational Research, Elsevier, vol. 99(1), pages 136-153, May.
    11. Fernández Carazo, Ana & Gómez Núñez, Trinidad & Guerrero Casas, Flor M. & Caballero Fernández, Rafael, 2008. "Evaluación y clasificación de las técnicas utilizadas por las organizaciones, en las últimas décadas, para seleccionar proyectos = Evaluation and classification of the techniques used by organizations," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 5(1), pages 67-115, June.
    12. Marc Bertonèche & Herwig Langohr, 1977. "Le choix des investissements en situation de rationnement du capital : comparaison des solutions fournies par différents modèles théoriques," Revue Économique, Programme National Persée, vol. 28(5), pages 730-764.
    13. Minken, Harald, 2016. "Project selection with sets of mutually exclusive alternatives," Economics of Transportation, Elsevier, vol. 6(C), pages 11-17.
    14. Kunikazu Yoda & András Prékopa, 2016. "Convexity and Solutions of Stochastic Multidimensional 0-1 Knapsack Problems with Probabilistic Constraints," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 715-731, May.
    15. Huang, Xiaoxia, 2007. "Optimal project selection with random fuzzy parameters," International Journal of Production Economics, Elsevier, vol. 106(2), pages 513-522, April.
    16. Kyparisis, George J. & Gupta, Sushil K. & Ip, Chi-Ming, 1996. "Project selection with discounted returns and multiple constraints," European Journal of Operational Research, Elsevier, vol. 94(1), pages 87-96, October.
    17. Kangaspunta, Jussi & Liesiö, Juuso & Salo, Ahti, 2012. "Cost-efficiency analysis of weapon system portfolios," European Journal of Operational Research, Elsevier, vol. 223(1), pages 264-275.
    18. Pérez, Fátima & Gómez, Trinidad & Caballero, Rafael & Liern, Vicente, 2018. "Project portfolio selection and planning with fuzzy constraints," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 117-129.
    19. Marshall L. Fisher, 2004. "The Lagrangian Relaxation Method for Solving Integer Programming Problems," Management Science, INFORMS, vol. 50(12_supple), pages 1861-1871, December.
    20. Kemp-Benedict, Eric, 2018. "Investing in a Green Transition," Ecological Economics, Elsevier, vol. 153(C), pages 218-236.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:34:y:2004:i:6:p:415-425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.