IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v33y2021i2p672-684.html
   My bibliography  Save this article

Reducing Simulation Input-Model Risk via Input Model Averaging

Author

Listed:
  • Barry L. Nelson

    (Northwestern University, Evanston, Illinois 60208-3119)

  • Alan T. K. Wan

    (City University of Hong Kong, Kowloon, Hong Kong)

  • Guohua Zou

    (Capital Normal University, Beijing 100048, China)

  • Xinyu Zhang

    (University of Science and Technology of China, Hefei 230052, China; Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China)

  • Xi Jiang

    (Northwestern University, Evanston, Illinois 60208-3119)

Abstract

Input uncertainty is an aspect of simulation model risk that arises when the driving input distributions are derived or “fit” to real-world, historical data. Although there has been significant progress on quantifying and hedging against input uncertainty, there has been no direct attempt to reduce it via better input modeling. The meaning of “better” depends on the context and the objective: Our context is when (a) there are one or more families of parametric distributions that are plausible choices; (b) the real-world historical data are not expected to perfectly conform to any of them; and (c) our primary goal is to obtain higher-fidelity simulation output rather than to discover the “true” distribution. In this paper, we show that frequentist model averaging can be an effective way to create input models that better represent the true, unknown input distribution, thereby reducing model risk. Input model averaging builds from standard input modeling practice, is not computationally burdensome, requires no change in how the simulation is executed nor any follow-up experiments, and is available on the Comprehensive R Archive Network (CRAN). We provide theoretical and empirical support for our approach.

Suggested Citation

  • Barry L. Nelson & Alan T. K. Wan & Guohua Zou & Xinyu Zhang & Xi Jiang, 2021. "Reducing Simulation Input-Model Risk via Input Model Averaging," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 672-684, May.
  • Handle: RePEc:inm:orijoc:v:33:y:2021:i:2:p:672-684
    DOI: 10.1287/ijoc.2020.0994
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2020.0994
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2020.0994?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stephen E. Chick, 2001. "Input Distribution Selection for Simulation Experiments: Accounting for Input Uncertainty," Operations Research, INFORMS, vol. 49(5), pages 744-758, October.
    2. Zhang, Xinyu & Wan, Alan T.K. & Zou, Guohua, 2013. "Model averaging by jackknife criterion in models with dependent data," Journal of Econometrics, Elsevier, vol. 174(2), pages 82-94.
    3. Wan, Alan T.K. & Zhang, Xinyu & Zou, Guohua, 2010. "Least squares model averaging by Mallows criterion," Journal of Econometrics, Elsevier, vol. 156(2), pages 277-283, June.
    4. Hansen, Bruce E. & Racine, Jeffrey S., 2012. "Jackknife model averaging," Journal of Econometrics, Elsevier, vol. 167(1), pages 38-46.
    5. Liang, Hua & Zou, Guohua & Wan, Alan T. K. & Zhang, Xinyu, 2011. "Optimal Weight Choice for Frequentist Model Average Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1053-1066.
    6. Wei Xie & Barry L. Nelson & Russell R. Barton, 2014. "A Bayesian Framework for Quantifying Uncertainty in Stochastic Simulation," Operations Research, INFORMS, vol. 62(6), pages 1439-1452, December.
    7. Eunhye Song & Barry L. Nelson, 2015. "Quickly Assessing Contributions to Input Uncertainty," IISE Transactions, Taylor & Francis Journals, vol. 47(9), pages 893-909, September.
    8. Bruce E. Hansen, 2007. "Least Squares Model Averaging," Econometrica, Econometric Society, vol. 75(4), pages 1175-1189, July.
    9. John M. Burt, Jr. & Mark B. Garman, 1971. "Conditional Monte Carlo: A Simulation Technique for Stochastic Network Analysis," Management Science, INFORMS, vol. 18(3), pages 207-217, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucy E. Morgan & Luke Rhodes-Leader & Russell R. Barton, 2022. "Reducing and Calibrating for Input Model Bias in Computer Simulation," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2368-2382, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haili Zhang & Guohua Zou, 2020. "Cross-Validation Model Averaging for Generalized Functional Linear Model," Econometrics, MDPI, vol. 8(1), pages 1-35, February.
    2. Yan Gao & Xinyu Zhang & Shouyang Wang & Terence Tai-leung Chong & Guohua Zou, 2019. "Frequentist model averaging for threshold models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 275-306, April.
    3. Chu-An Liu & Biing-Shen Kuo & Wen-Jen Tsay, 2017. "Autoregressive Spectral Averaging Estimator," IEAS Working Paper : academic research 17-A013, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    4. Wan, Alan T.K. & Zhang, Xinyu & Wang, Shouyang, 2014. "Frequentist model averaging for multinomial and ordered logit models," International Journal of Forecasting, Elsevier, vol. 30(1), pages 118-128.
    5. Lu, Xun & Su, Liangjun, 2015. "Jackknife model averaging for quantile regressions," Journal of Econometrics, Elsevier, vol. 188(1), pages 40-58.
    6. Liu, Chu-An, 2015. "Distribution theory of the least squares averaging estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 142-159.
    7. Shou-Yung Yin & Chu-An Liu & Chang-Ching Lin, 2021. "Focused Information Criterion and Model Averaging for Large Panels With a Multifactor Error Structure," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 54-68, January.
    8. Wei, Yuting & Wang, Qihua, 2021. "Cross-validation-based model averaging in linear models with response missing at random," Statistics & Probability Letters, Elsevier, vol. 171(C).
    9. Jingwen Tu & Hu Yang & Chaohui Guo & Jing Lv, 2021. "Model averaging marginal regression for high dimensional conditional quantile prediction," Statistical Papers, Springer, vol. 62(6), pages 2661-2689, December.
    10. Qingfeng Liu & Ryo Okui & Arihiro Yoshimura, 2016. "Generalized Least Squares Model Averaging," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1692-1752, December.
    11. Zhao, Shangwei & Zhang, Xinyu & Gao, Yichen, 2016. "Model averaging with averaging covariance matrix," Economics Letters, Elsevier, vol. 145(C), pages 214-217.
    12. Liao, Jun & Zou, Guohua & Gao, Yan & Zhang, Xinyu, 2021. "Model averaging prediction for time series models with a diverging number of parameters," Journal of Econometrics, Elsevier, vol. 223(1), pages 190-221.
    13. Aman Ullah & Alan T. K. Wan & Huansha Wang & Xinyu Zhang & Guohua Zou, 2017. "A semiparametric generalized ridge estimator and link with model averaging," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 370-384, March.
    14. Liao, Jun & Zong, Xianpeng & Zhang, Xinyu & Zou, Guohua, 2019. "Model averaging based on leave-subject-out cross-validation for vector autoregressions," Journal of Econometrics, Elsevier, vol. 209(1), pages 35-60.
    15. Jan R. Magnus & Wendun Wang & Xinyu Zhang, 2016. "Weighted-Average Least Squares Prediction," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1040-1074, June.
    16. Kenichiro McAlinn & Kosaku Takanashi, 2019. "Mean-shift least squares model averaging," Papers 1912.01194, arXiv.org.
    17. Liao, Jun & Zou, Guohua, 2020. "Corrected Mallows criterion for model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    18. Christopher F. Parmeter & Alan T. K. Wan & Xinyu Zhang, 2019. "Model averaging estimators for the stochastic frontier model," Journal of Productivity Analysis, Springer, vol. 51(2), pages 91-103, June.
    19. Zhao, Shangwei & Xie, Tian & Ai, Xin & Yang, Guangren & Zhang, Xinyu, 2023. "Correcting sample selection bias with model averaging for consumer demand forecasting," Economic Modelling, Elsevier, vol. 123(C).
    20. Yuting Wei & Qihua Wang & Wei Liu, 2021. "Model averaging for linear models with responses missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 535-553, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:33:y:2021:i:2:p:672-684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.