IDEAS home Printed from https://ideas.repec.org/a/ibn/assjnl/v13y2017i9p158.html
   My bibliography  Save this article

Efficiency Analysis of Indonesian Coffee Supply Chain Network Using A New DEA Model Approach: Literature Review

Author

Listed:
  • Nia Rosiana
  • Rita Nurmalina
  • Ratna Winandi
  • Amzul Rifin

Abstract

A position of Indonesia as the world’s biggest producer of robusta coffee has declined. Currently, Vietnam is the main producer of robusta coffee in the world. A decline in Indonesia's position is due to saturation of the Indonesian coffee export destination countries which results in declining demand for export of Indonesian coffee. The quantity of Indonesian robusta coffee supplied to the international market depends on secured supply of domestic raw materials and the efficiency of supply chain network. Efforts to ensure the domestic coffee supply is done through efficiency analysis on each member of the supply chain that forms the supply chain network. Efficiency measurement in supply chain network is performed using the New DEA Model developed by Liang et al. The measurement technique of DEA is gradually the efficiency of the production unit (product flow) of each actor (seller and buyer) on the supply chain. The efficiency level of each actor can determine the efficiency of the supply chain network. This is because of the relationship of input and output between seller and buyer so that the final output of supply chain network will produce. New DEA model is more appropriate to use in supply efficiency mechanism that can be cooperative.

Suggested Citation

  • Nia Rosiana & Rita Nurmalina & Ratna Winandi & Amzul Rifin, 2017. "Efficiency Analysis of Indonesian Coffee Supply Chain Network Using A New DEA Model Approach: Literature Review," Asian Social Science, Canadian Center of Science and Education, vol. 13(9), pages 158-158, September.
  • Handle: RePEc:ibn:assjnl:v:13:y:2017:i:9:p:158
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/ass/article/download/69376/38261
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/ass/article/view/69376
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bustanul Arifin, 2010. "Global Sustainability Regulation and Coffee Supply Chains in Lampung Province, Indonesia," Asian Journal of Agriculture and Development, Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA), vol. 7(2), pages 67-89, December.
    2. Negi, Saurav & Anand, Neeraj, 2014. "Supply Chain Efficiency: An Insight from Fruits and Vegetables Sector in India," Journal of Operations and Supply Chain Management (JOSCM), Fundação Getulio Vargas, Escola de Administração de Empresas de São Paulo (FGV EAESP), vol. 7(2), December.
    3. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    4. Liang Liang & Feng Yang & Wade Cook & Joe Zhu, 2006. "DEA models for supply chain efficiency evaluation," Annals of Operations Research, Springer, vol. 145(1), pages 35-49, July.
    5. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2007. "Data Envelopment Analysis," Springer Books, Springer, edition 0, number 978-0-387-45283-8, December.
    6. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2006. "Introduction to Data Envelopment Analysis and Its Uses," Springer Books, Springer, number 978-0-387-29122-2, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katerina Fotova Čiković & Ivana Martinčević & Joško Lozić, 2022. "Application of Data Envelopment Analysis (DEA) in the Selection of Sustainable Suppliers: A Review and Bibliometric Analysis," Sustainability, MDPI, vol. 14(11), pages 1-30, May.
    2. Ji, Xiang & Li, Guo & Wang, Zhaohua, 2017. "Impact of emission regulation policies on Chinese power firms’ reusable environmental investments and sustainable operations," Energy Policy, Elsevier, vol. 108(C), pages 163-177.
    3. Fukuyama, Hirofumi & Weber, William L., 2010. "A slacks-based inefficiency measure for a two-stage system with bad outputs," Omega, Elsevier, vol. 38(5), pages 398-409, October.
    4. Falavigna, G. & Ippoliti, R., 2020. "The socio-economic planning of a community nurses programme in mountain areas: A Directional Distance Function approach," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    5. Mousavi-Avval, Seyed Hashem & Rafiee, Shahin & Jafari, Ali & Mohammadi, Ali, 2011. "Optimization of energy consumption for soybean production using Data Envelopment Analysis (DEA) approach," Applied Energy, Elsevier, vol. 88(11), pages 3765-3772.
    6. Xiang Ji & Jiasen Sun & Qunwei Wang & Qianqian Yuan, 2019. "Revealing Energy Over-Consumption and Pollutant Over-Emission Behind GDP: A New Multi-criteria Sustainable Measure," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1391-1421, December.
    7. Sarmento, Joaquim Miranda & Renneboog, Luc & Verga-Matos, Pedro, 2017. "Measuring highway efficiency : A DEA approach and the Malquist index," Other publications TiSEM 23264815-321e-45a3-83ee-9, Tilburg University, School of Economics and Management.
    8. Dan Luo & Shujie Yao, 2009. "World Financial Crisis and the Rise of Chinese Commercial Banks," Discussion Papers 09/08, University of Nottingham, GEP.
    9. Lorena Androutsou & Michail Kokkinos & Dimitra Latsou & Mary Geitona, 2022. "Assessing the Efficiency and Productivity of the Hospital Clinics on the Island of Rhodes during the COVID-19 Pandemic," IJERPH, MDPI, vol. 19(23), pages 1-12, November.
    10. Jie Wu & Qingyuan Zhu & Junfei Chu & Liang Liang, 2015. "Two-Stage Network Structures with Undesirable Intermediate Outputs Reused: A DEA Based Approach," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 455-477, October.
    11. Wu, Huaqing & Lv, Kui & Liang, Liang & Hu, Hanhui, 2017. "Measuring performance of sustainable manufacturing with recyclable wastes: A case from China’s iron and steel industry," Omega, Elsevier, vol. 66(PA), pages 38-47.
    12. Nodin, Mohd Norazmi & Mustafa, Zainol & Hussain, Saiful Izzuan, 2023. "Eco-efficiency assessment of Malaysian rice self-sufficiency approach," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    13. Ching-Chin Chern & Tzi-Yuan Chou & Bo Hsiao, 2016. "Assessing the efficiency of supply chain scheduling algorithms using data envelopment analysis," Information Systems and e-Business Management, Springer, vol. 14(4), pages 823-856, November.
    14. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    15. Wu, Jie & Zhu, Qingyuan & Ji, Xiang & Chu, Junfei & Liang, Liang, 2016. "Two-stage network processes with shared resources and resources recovered from undesirable outputs," European Journal of Operational Research, Elsevier, vol. 251(1), pages 182-197.
    16. Chaouk, Mohammed & Pagliari, Dr Romano & Moxon, Richard, 2020. "The impact of national macro-environment exogenous variables on airport efficiency," Journal of Air Transport Management, Elsevier, vol. 82(C).
    17. Asmild, Mette & Matthews, Kent, 2012. "Multi-directional efficiency analysis of efficiency patterns in Chinese banks 1997–2008," European Journal of Operational Research, Elsevier, vol. 219(2), pages 434-441.
    18. Mohammad Khoveyni & Robabeh Eslami, 2022. "Merging two-stage series network structures: A DEA-based approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 273-302, March.
    19. Yang, Wen-Chi & Lee, Yuh-Ming & Hu, Jin-Li, 2016. "Urban sustainability assessment of Taiwan based on data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 341-353.
    20. Suzuki, Soushi & Nijkamp, Peter & Rietveld, Piet & Pels, Eric, 2010. "A distance friction minimization approach in data envelopment analysis: A comparative study on airport efficiency," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1104-1115, December.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:assjnl:v:13:y:2017:i:9:p:158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.