IDEAS home Printed from https://ideas.repec.org/a/gam/jwaste/v1y2023i3p35-611d1185089.html
   My bibliography  Save this article

Low Carbon Emissions and Energy Consumption: A Targeted Approach Based on the Life Cycle Assessment of a District

Author

Listed:
  • Modeste Kameni Nematchoua

    (School of Informatics, Computing, and Cyber Systems|Northern Arizona University, 1295 S. Knoles Dr., Building 90, Room 320, Flagstaff, AZ 86011, USA
    Department of Physic, Faculty of Sciences, University of Yaounde 1, Yaounde 812, Cameroon)

  • José A. Orosa

    (Department of Marine Engineering, University of A Coruña, Paseo de Ronda 51, 15011 A Coruña, Spain)

Abstract

Nowadays, the methodology aiming to achieve carbon neutrality and net zero energy on a large scale is known. Despite this, few specialists are mastering this technology globally. What new scenarios. applied at the neighbourhood scale. generate a significant reduction in the rate of CO 2 emissions and energy demand? In addition, a lack of massive, regular, and consistent data on carbon emissions and energy consumption has made it significantly difficult to understand the origins of climate change at the building and neighbourhood scales. This work has, as its main goal, the assessment of different strategies that facilitate reduction in the concentration of CO 2 and lower energy demands at the district level. The life cycle assessment of a new district has been carried out over 100 years during the four stages of the life cycle of the neighbourhood (construction, operation, demolition and end of life). The results showed that up to 93% of greenhouse gas (GHG) was produced during the operational stage. The energy demand due to transport and waste management represented 60% of the total energy demand of the district during the operational stage. There is still a possibility to maintain air temperature growth around 1.5 °C in the next decade by means of the following: Global warming + 100% of heavy renovation of all buildings + 100% of electric car − renewable energy. This strategy would facilitate a reduction of over 92% of the CO 2 produced at the district level.

Suggested Citation

  • Modeste Kameni Nematchoua & José A. Orosa, 2023. "Low Carbon Emissions and Energy Consumption: A Targeted Approach Based on the Life Cycle Assessment of a District," Waste, MDPI, vol. 1(3), pages 1-24, July.
  • Handle: RePEc:gam:jwaste:v:1:y:2023:i:3:p:35-611:d:1185089
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2813-0391/1/3/35/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2813-0391/1/3/35/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nichols, Brice G. & Kockelman, Kara M., 2014. "Life-cycle energy implications of different residential settings: Recognizing buildings, travel, and public infrastructure," Energy Policy, Elsevier, vol. 68(C), pages 232-242.
    2. Rafique, M. Mujahid & Rehman, S. & Alhems, Luai M., 2018. "Developing zero energy and sustainable villages – A case study for communities of the future," Renewable Energy, Elsevier, vol. 127(C), pages 565-574.
    3. Nematchoua, Modeste Kameni & Marie-Reine Nishimwe, Antoinette & Reiter, Sigrid, 2021. "Towards nearly zero-energy residential neighbourhoods in the European Union: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Röck, Martin & Saade, Marcella Ruschi Mendes & Balouktsi, Maria & Rasmussen, Freja Nygaard & Birgisdottir, Harpa & Frischknecht, Rolf & Habert, Guillaume & Lützkendorf, Thomas & Passer, Alexander, 2020. "Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation," Applied Energy, Elsevier, vol. 258(C).
    5. Kim, Min-Hwi & Kim, Deukwon & Heo, Jaehyeok & Lee, Dong-Won, 2019. "Techno-economic analysis of hybrid renewable energy system with solar district heating for net zero energy community," Energy, Elsevier, vol. 187(C).
    6. Sesil Koutra & Claire Pagnoule & Nikolaos-Fivos Galatoulas & Ali Bagheri & Thomas Waroux & Vincent Becue & Christos S. Ioakimidis, 2019. "The Zero-Energy Idea in Districts: Application of a Methodological Approach to a Case Study of Epinlieu (Mons)," Sustainability, MDPI, vol. 11(17), pages 1-27, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc Richter & Pio Lombardi & Bartlomiej Arendarski & André Naumann & Andreas Hoepfner & Przemyslaw Komarnicki & Antonio Pantaleo, 2021. "A Vision for Energy Decarbonization: Planning Sustainable Tertiary Sites as Net-Zero Energy Systems," Energies, MDPI, vol. 14(17), pages 1-16, September.
    2. Hiroko Nakaoka & Norimichi Suzuki & Akifumi Eguchi & Daisuke Matsuzawa & Chisato Mori, 2022. "Impact of Exposure to Indoor Air Chemicals on Health and the Progression of Building-Related Symptoms: A Case Report," Sustainability, MDPI, vol. 14(21), pages 1-13, November.
    3. Kim, Min-Hwi & Kim, Deukwon & Heo, Jaehyeok & Lee, Dong-Won, 2020. "Energy performance investigation of net plus energy town: Energy balance of the Jincheon Eco-Friendly energy town," Renewable Energy, Elsevier, vol. 147(P1), pages 1784-1800.
    4. Borge-Diez, David & Icaza, Daniel & Trujillo-Cueva, Diego Francisco & Açıkkalp, Emin, 2022. "Renewable energy driven heat pumps decarbonization potential in existing residential buildings: Roadmap and case study of Spain," Energy, Elsevier, vol. 247(C).
    5. Modeste Kameni Nematchoua, 2022. "Strategies for Studying Acidification and Eutrophication Potentials, a Case Study of 150 Countries," J, MDPI, vol. 5(1), pages 1-16, March.
    6. Min-Hwi Kim & Dong-Won Lee & Deuk-Won Kim & Young-Sub An & Jae-Ho Yun, 2021. "Energy Performance Investigation of Bi-Directional Convergence Energy Prosumers for an Energy Sharing Community," Energies, MDPI, vol. 14(17), pages 1-17, September.
    7. Ahmad Taki & Anastasiya Zakharanka, 2023. "The Effect of Degradation on Cold Climate Building Energy Performance: A Comparison with Hot Climate Buildings," Sustainability, MDPI, vol. 15(8), pages 1-38, April.
    8. Muhammad Bilal Ali & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2023. "Decarbonizing Telecommunication Sector: Techno-Economic Assessment and Optimization of PV Integration in Base Transceiver Stations in Telecom Sector Spreading across Various Geographically Regions," Energies, MDPI, vol. 16(9), pages 1-34, April.
    9. Xiaoxia Li & Husheng Qiu & Zhifeng Wang & Jinping Li & Guobin Yuan & Xiao Guo & Lifeng Jin, 2023. "Numerical Investigation of a Solar-Heating System with Solar-Tower Receiver and Seasonal Storage in Northern China: Dynamic Performance Assessment and Operation Strategy Analysis," Energies, MDPI, vol. 16(14), pages 1-27, July.
    10. Jiaojiao Yang & Ting Wang & Yujie Hu & Qiyun Deng & Shu Mo, 2023. "Comparative Analysis of Research Trends and Hotspots of Foreign and Chinese Building Carbon Emissions Based on Bibliometrics," Sustainability, MDPI, vol. 15(13), pages 1-24, June.
    11. Chenfei Liu & Stephen Sharples & Haniyeh Mohammadpourkarbasi, 2021. "Evaluating Insulation, Glazing and Airtightness Options for Passivhaus EnerPHit Retrofitting of a Dwelling in China’s Hot Summer–Cold Winter Climate Region," Energies, MDPI, vol. 14(21), pages 1-17, October.
    12. Ziyu Duan & Seiyong Kim, 2023. "Progress in Research on Net-Zero-Carbon Cities: A Literature Review and Knowledge Framework," Energies, MDPI, vol. 16(17), pages 1-27, August.
    13. Balta-Ozkan, Nazmiye & Le Gallo, Julie, 2018. "Spatial variation in energy attitudes and perceptions: Evidence from Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2160-2180.
    14. Ryu, Jun & Bahadur, Jitendra & Hayase, Shuzi & Jeong, Sang Mun & Kang, Dong-Won, 2023. "Efficient and stable energy conversion using 2D/3D mixed Sn-perovskite photovoltaics with antisolvent engineering," Energy, Elsevier, vol. 278(PB).
    15. Apostolopoulos, Vasilis & Mamounakis, Ioannis & Seitaridis, Andreas & Tagkoulis, Nikolas & Kourkoumpas, Dimitrios-Sotirios & Iliadis, Petros & Angelakoglou, Komninos & Nikolopoulos, Nikolaos, 2023. "Αn integrated life cycle assessment and life cycle costing approach towards sustainable building renovation via a dynamic online tool," Applied Energy, Elsevier, vol. 334(C).
    16. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    17. Gabriele Battista & Emanuele de Lieto Vollaro & Andrea Vallati & Roberto de Lieto Vollaro, 2023. "Technical–Financial Feasibility Study of a Micro-Cogeneration System in the Buildings in Italy," Energies, MDPI, vol. 16(14), pages 1-15, July.
    18. Antoci, Angelo & Borghesi, Simone & Galeotti, Marcello & Russu, Paolo, 2022. "Maladaptation to environmental degradation and the interplay between negative and positive externalities," European Economic Review, Elsevier, vol. 143(C).
    19. Badr Eddine Lebrouhi & Eric Schall & Bilal Lamrani & Yassine Chaibi & Tarik Kousksou, 2022. "Energy Transition in France," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    20. Jacek Michalak & Bartosz Michałowski, 2022. "Understanding Sustainability of Construction Products: Answers from Investors, Contractors, and Sellers of Building Materials," Sustainability, MDPI, vol. 14(5), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jwaste:v:1:y:2023:i:3:p:35-611:d:1185089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.