IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i7p1079-d102220.html
   My bibliography  Save this article

Application of Protection Motivation Theory to Investigate Sustainable Waste Management Behaviors

Author

Listed:
  • Piyapong Janmaimool

    (Environmental Social Sciences Program, Department of Social Sciences and Humanities, School of Liberal Arts, King Mongkut’s University of Technology Thonburi, 126 Prachauthit Road, Thungkru District, Bangkok 10140, Thailand)

Abstract

The aim of this study is to explain individuals’ engagement in sustainable waste management behaviors (SWMBs) based on the application of protection motivation theory (PMT). SWMBs include waste avoidance, green purchasing, reuse and recycle, and waste disposal behaviors. Considering the amount of solid waste generation per capita per day during the past 10 years, the statistical records from the Bangkok Metropolitan Administration (BMA) illustrate the increasing trend of solid waste generation from 1.18 kg per capita per day in 2005 to 1.28 kg per capita per day 2015. Many scholars have asserted that human beings should alter their behaviors to successfully reduce their environmental impact. Several environmental problems (e.g., air pollution, water pollution, and odors) caused by waste disposal are consequences of human behaviors; therefore, citizens’ engagement in SWMBs should be widely promoted. This study applies PMT to explore how individuals’ SWMBs are influenced by their perceived threats caused by environmental contamination from waste disposal and their perceived coping capability. The Bangkok metropolitan area was selected as a case study because it has faced serious waste management problems, caused by increasing amounts of solid waste over the last ten years. Questionnaire surveys were administered to 193 public and private office workers residing in the city of Bangkok. Multiple linear regression analyses were performed to justify the effects of individual threat appraisal and coping appraisal on SWMB engagement. The results illustrated that respondents’ self-efficacy could explain all types of SWMBs. On the contrary, response efficacy was not a significant predictor of all behaviors. People’s perceived severity of adverse consequences caused by pollutants could significantly explain their waste disposal and reuse and recycle behaviors, and the perceived probability of being impacted by pollutants could explain only reuse and recycling behaviors. Thus, PMT may be well suited for explaining low-cost and simple SWMBs that require less effort. To promote people’s engagement in each type of SWMB, different communication campaigns should be established.

Suggested Citation

  • Piyapong Janmaimool, 2017. "Application of Protection Motivation Theory to Investigate Sustainable Waste Management Behaviors," Sustainability, MDPI, vol. 9(7), pages 1-16, June.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:7:p:1079-:d:102220
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/7/1079/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/7/1079/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    2. Kahn, Matthew E., 2007. "Do greens drive Hummers or hybrids? Environmental ideology as a determinant of consumer choice," Journal of Environmental Economics and Management, Elsevier, vol. 54(2), pages 129-145, September.
    3. Peter Kennedy, 2003. "A Guide to Econometrics, 5th Edition," MIT Press Books, The MIT Press, edition 5, volume 1, number 026261183x, December.
    4. Budica Ilie & Dumitru Aurelia & Busu Oprea Valentin & Purcaru Mona-Lisa, 2015. "Waste Management As Commitment And Duty Of Citizens," Polish Journal of Management Studies, Czestochowa Technical University, Department of Management, vol. 11(1), pages 7-16, June.
    5. Edwin T. Fuj & Michael Hennessy & James Mak, 1985. "An Evaluation of the Validity and Reliability of Survey Response Data On Household Electricity Conservation," Evaluation Review, , vol. 9(1), pages 93-104, February.
    6. Ozaki, Ritsuko & Sevastyanova, Katerina, 2011. "Going hybrid: An analysis of consumer purchase motivations," Energy Policy, Elsevier, vol. 39(5), pages 2217-2227, May.
    7. Knauf, Marcus, 2015. "Waste hierarchy revisited — an evaluation of waste wood recycling in the context of EU energy policy and the European market," Forest Policy and Economics, Elsevier, vol. 54(C), pages 58-60.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Egbue, Ona & Long, Suzanna, 2012. "Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions," Energy Policy, Elsevier, vol. 48(C), pages 717-729.
    2. Elena Higueras-Castillo & Sebastian Molinillo & J. Andres Coca-Stefaniak & Francisco Liébana-Cabanillas, 2019. "Perceived Value and Customer Adoption of Electric and Hybrid Vehicles," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
    3. Mohamed, Moataz & Higgins, Chris & Ferguson, Mark & Kanaroglou, Pavlos, 2016. "Identifying and characterizing potential electric vehicle adopters in Canada: A two-stage modelling approach," Transport Policy, Elsevier, vol. 52(C), pages 100-112.
    4. Shanyong Wang & Jin Fan & Dingtao Zhao & Shu Yang & Yuanguang Fu, 2016. "Predicting consumers’ intention to adopt hybrid electric vehicles: using an extended version of the theory of planned behavior model," Transportation, Springer, vol. 43(1), pages 123-143, January.
    5. Zhang, Xian & Wang, Ke & Hao, Yu & Fan, Jing-Li & Wei, Yi-Ming, 2013. "The impact of government policy on preference for NEVs: The evidence from China," Energy Policy, Elsevier, vol. 61(C), pages 382-393.
    6. Kumar Shalender & Naman Sharma, 2021. "Using extended theory of planned behaviour (TPB) to predict adoption intention of electric vehicles in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 665-681, January.
    7. Mohamed, Moataz & Higgins, Christopher D. & Ferguson, Mark & Réquia, Weeberb J., 2018. "The influence of vehicle body type in shaping behavioural intention to acquire electric vehicles: A multi-group structural equation approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 54-72.
    8. Shanyong Wang & Jin Fan & Dingtao Zhao & Shu Yang & Yuanguang Fu, 2016. "Predicting consumers’ intention to adopt hybrid electric vehicles: using an extended version of the theory of planned behavior model," Transportation, Springer, vol. 43(1), pages 123-143, January.
    9. Wang, Jiaxing & Matsumoto, Shigeru, 2022. "Can subsidy programs lead consumers to select “greener” products?: Evidence from the Eco-car program in Japan," Research in Transportation Economics, Elsevier, vol. 91(C).
    10. Yu Wang & Shanyong Wang & Jing Wang & Jiuchang Wei & Chenglin Wang, 2020. "An empirical study of consumers’ intention to use ride-sharing services: using an extended technology acceptance model," Transportation, Springer, vol. 47(1), pages 397-415, February.
    11. Ozaki, Ritsuko & Sevastyanova, Katerina, 2011. "Going hybrid: An analysis of consumer purchase motivations," Energy Policy, Elsevier, vol. 39(5), pages 2217-2227, May.
    12. Tuğba Yeğin & Muhammad Ikram, 2022. "Analysis of Consumers’ Electric Vehicle Purchase Intentions: An Expansion of the Theory of Planned Behavior," Sustainability, MDPI, vol. 14(19), pages 1-27, September.
    13. Petschnig, Martin & Heidenreich, Sven & Spieth, Patrick, 2014. "Innovative alternatives take action – Investigating determinants of alternative fuel vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 68-83.
    14. Gruber Johannes & Rudolph Christian & Kolarova Viktoriya, 2015. "Einflussfaktoren bei der Einführung des Lastenrads im urbanen Wirtschaftsverkehr," ZFW – Advances in Economic Geography, De Gruyter, vol. 59(1), pages 115-129, October.
    15. Bireswar Dutta & Hsin-Ginn Hwang, 2021. "Consumers Purchase Intentions of Green Electric Vehicles: The Influence of Consumers Technological and Environmental Considerations," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
    16. Nayum, Alim & Klöckner, Christian A. & Prugsamatz, Sunita, 2013. "Influences of car type class and carbon dioxide emission levels on purchases of new cars: A retrospective analysis of car purchases in Norway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 48(C), pages 96-108.
    17. Zhaohua Wang & Xiaoyang Dong, 2016. "Determinants and policy implications of residents’ new energy vehicle purchases: the evidence from China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 155-173, May.
    18. Andriosopoulos, Kostas & Bigerna, Simona & Bollino, Carlo Andrea & Micheli, Silvia, 2018. "The impact of age on Italian consumers' attitude toward alternative fuel vehicles," Renewable Energy, Elsevier, vol. 119(C), pages 299-308.
    19. Saqib Ali & Habib Ullah & Minhas Akbar & Waheed Akhtar & Hasan Zahid, 2019. "Determinants of Consumer Intentions to Purchase Energy-Saving Household Products in Pakistan," Sustainability, MDPI, vol. 11(5), pages 1-20, March.
    20. Elizabeth Kempen & Lorna Christie, 2022. "Designing to Attract in an Emerging Market: Applying Behavioural Reasoning Theory to South African Consumer Reactions to an Ultra-High Temperature Milk Product Line Extension," Journal of Marketing and Consumer Behaviour in Emerging Markets, University of Warsaw, Faculty of Management, vol. 1(14), pages 4-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:7:p:1079-:d:102220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.