IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i4p606-d95708.html
   My bibliography  Save this article

Mortality Associated with High Ambient Temperatures, Heatwaves, and the Urban Heat Island in Athens, Greece

Author

Listed:
  • John Paravantis

    (Department of International and European Studies, University of Piraeus, Piraeus 185 34, Greece)

  • Mat Santamouris

    (The Anitta Lawrence Chair of High Performance Architecture, Faculty of Built Environment, University of New South Wales, Sydney, NSW 2052, Australia)

  • Constantinos Cartalis

    (Department of Environmental Physics, National and Kapodistrian University of Athens, Athens 157 72, Greece)

  • Chrysanthi Efthymiou

    (Department of Environmental Physics, National and Kapodistrian University of Athens, Athens 157 72, Greece)

  • Nikoletta Kontoulis

    (Department of International and European Studies, University of Piraeus, Piraeus 185 34, Greece)

Abstract

: Climate change looms as the biggest threat of the 21st century, and its effect on urban mortality is exacerbated by urban heat islands. This study analyzes the impact of high temperatures, heatwaves, and the urban heat island on the cardiovascular and respiratory mortality of people over 65 years of age for the years 2002 to 2012. The area of application is Athens, Greece, an urban agglomeration experiencing an urban heat island of high intensity. The correlation of the daily cardiovascular and respiratory mortality count of people over 65 years of age with various temperature measures confirmed a U-shaped exposure response curve, with fewer deaths in the range of moderate temperatures. At high and very high temperatures, this mortality increased by 20 to 35% correspondingly, at a 99.9% significance level. Mortality was further investigated with ordinary least squares, Poisson, and negative binomial times series models, which, although suffering from poor fit, showed a one-day lag for the maximum temperature effect on mortality. Finally, cluster analysis for observations confined to May to September, confirmed by multiple discriminant analysis, showed the existence of six clusters, with the highest excess mortality count of 23% for the cluster that included the hottest days and 20.6% for the heatwave cluster. To this end, it is recommended that policies target high ambient temperatures and heatwaves as a priority.

Suggested Citation

  • John Paravantis & Mat Santamouris & Constantinos Cartalis & Chrysanthi Efthymiou & Nikoletta Kontoulis, 2017. "Mortality Associated with High Ambient Temperatures, Heatwaves, and the Urban Heat Island in Athens, Greece," Sustainability, MDPI, vol. 9(4), pages 1-22, April.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:4:p:606-:d:95708
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/4/606/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/4/606/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christoph Schär & Pier Luigi Vidale & Daniel Lüthi & Christoph Frei & Christian Häberli & Mark A. Liniger & Christof Appenzeller, 2004. "The role of increasing temperature variability in European summer heatwaves," Nature, Nature, vol. 427(6972), pages 332-336, January.
    2. Rainer Winkelmann, 2015. "Counting on count data models," IZA World of Labor, Institute of Labor Economics (IZA), pages 148-148, May.
    3. Giovanni Baiocchi & Walter Distaso, 2003. "GRETL: Econometric software for the GNU generation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 105-110.
    4. repec:iza:izawol:journl:y:2015:p:148 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ioanna Kyprianou & Despina Serghides & Harriet Thomson & Salvatore Carlucci, 2023. "Learning from the Past: The Impacts of Economic Crises on Energy Poverty Mortality and Rural Vulnerability," Energies, MDPI, vol. 16(13), pages 1-13, July.
    2. Michael Gräf & Markus Immitzer & Peter Hietz & Rosemarie Stangl, 2021. "Water-Stressed Plants Do Not Cool: Leaf Surface Temperature of Living Wall Plants under Drought Stress," Sustainability, MDPI, vol. 13(7), pages 1-11, April.
    3. Ido Nevat & Gloria Pignatta & Lea A. Ruefenacht & Juan Angel Acero, 2021. "A decision support tool for climate-informed and socioeconomic urban design," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7627-7651, May.
    4. Kyriaki Psistaki & Ioannis M. Dokas & Anastasia K. Paschalidou, 2022. "The Impact of Ambient Temperature on Cardiorespiratory Mortality in Northern Greece," IJERPH, MDPI, vol. 20(1), pages 1-15, December.
    5. Katlego P. Ncongwane & Joel O. Botai & Venkataraman Sivakumar & Christina M. Botai & Abiodun M. Adeola, 2021. "Characteristics and Long-Term Trends of Heat Stress for South Africa," Sustainability, MDPI, vol. 13(23), pages 1-20, November.
    6. Atefeh Tamaskani Esfehankalateh & Jack Ngarambe & Geun Young Yun, 2021. "Influence of Tree Canopy Coverage and Leaf Area Density on Urban Heat Island Mitigation," Sustainability, MDPI, vol. 13(13), pages 1-14, July.
    7. Andri Pyrgou & Mat Santamouris, 2018. "Increasing Probability of Heat-Related Mortality in a Mediterranean City Due to Urban Warming," IJERPH, MDPI, vol. 15(8), pages 1-14, July.
    8. Hassan Saeed Khan & Riccardo Paolini & Mattheos Santamouris & Peter Caccetta, 2020. "Exploring the Synergies between Urban Overheating and Heatwaves (HWs) in Western Sydney," Energies, MDPI, vol. 13(2), pages 1-17, January.
    9. Jack Ngarambe & Mattheos Santamouris & Geun Young Yun, 2022. "The Impact of Urban Warming on the Mortality of Vulnerable Populations in Seoul," Sustainability, MDPI, vol. 14(20), pages 1-26, October.
    10. Santamouris, M. & Yun, Geun Young, 2020. "Recent development and research priorities on cool and super cool materials to mitigate urban heat island," Renewable Energy, Elsevier, vol. 161(C), pages 792-807.
    11. John A. Paravantis & Panagiotis D. Tasios & Vasileios Dourmas & Georgios Andreakos & Konstantinos Velaoras & Nikoletta Kontoulis & Panagiota Mihalakakou, 2021. "A Regression Analysis of the Carbon Footprint of Megacities," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
    12. Peng Ren & Xinxin Zhang & Haoyan Liang & Qinglin Meng, 2019. "Assessing the Impact of Land Cover Changes on Surface Urban Heat Islands with High-Spatial-Resolution Imagery on a Local Scale: Workflow and Case Study," Sustainability, MDPI, vol. 11(19), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Inga Dailidienė & Inesa Servaitė & Remigijus Dailidė & Erika Vasiliauskienė & Lolita Rapolienė & Ramūnas Povilanskas & Donatas Valiukas, 2023. "Increasing Trends of Heat Waves and Tropical Nights in Coastal Regions (The Case Study of Lithuania Seaside Cities)," Sustainability, MDPI, vol. 15(19), pages 1-21, September.
    2. T. Hlásny & J. Holuša & P. Štěpánek & M. Turčáni & N. Polčák, 2011. "Expected impacts of climate change on forests: Czech Republic as a case study," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 57(10), pages 422-431.
    3. Wu, X.D. & Ji, Xi & Li, Chaohui & Xia, X.H. & Chen, G.Q., 2019. "Water footprint of thermal power in China: Implications from the high amount of industrial water use by plant infrastructure of coal-fired generation system," Energy Policy, Elsevier, vol. 132(C), pages 452-461.
    4. Błażejowski, Marcin & Kwiatkowski, Jacek, 2015. "Bayesian Model Averaging and Jointness Measures for gretl," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(i05).
    5. Chen, Ping-Yu & Chen, Chi-Chung & Chang, Chia-Lin, 2011. "Multiple Threshold Effects for Temperature and Mortality," MPRA Paper 35521, University Library of Munich, Germany.
    6. Fischer, Björn & Goldberg, Valeri & Bernhofer, Christian, 2008. "Effect of a coupled soil water–plant gas exchange on forest energy fluxes: Simulations with the coupled vegetation–boundary layer model HIRVAC," Ecological Modelling, Elsevier, vol. 214(2), pages 75-82.
    7. Michael Donadelli & Marcus Jüppner & Antonio Paradiso & Christian Schlag, 2021. "Computing Macro-Effects and Welfare Costs of Temperature Volatility: A Structural Approach," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 347-394, August.
    8. Fuhrer, Jurg & Beniston, Martin & Calanca, Pierluigi & Torriani, Daniele Simone, 2007. "Alternative Hedging Strategies in Maize Production to Cope with Climate Variability and Change," 101st Seminar, July 5-6, 2007, Berlin Germany 9275, European Association of Agricultural Economists.
    9. Gabriele Lobaccaro & Juan Angel Acero & Gerardo Sanchez Martinez & Ales Padro & Txomin Laburu & German Fernandez, 2019. "Effects of Orientations, Aspect Ratios, Pavement Materials and Vegetation Elements on Thermal Stress inside Typical Urban Canyons," IJERPH, MDPI, vol. 16(19), pages 1-29, September.
    10. Stacey E. Alexeeff & Doug Nychka & Stephan R. Sain & Claudia Tebaldi, 2018. "Emulating mean patterns and variability of temperature across and within scenarios in anthropogenic climate change experiments," Climatic Change, Springer, vol. 146(3), pages 319-333, February.
    11. Berlemann, Michael & Eurich, Marina, 2021. "Natural hazard risk and life satisfaction – Empirical evidence for hurricanes," Ecological Economics, Elsevier, vol. 190(C).
    12. Sambracos, Evangelos & Paravantis, John, 2006. "A comparative assessment of aggregate car ownership model estimation methodologies," MPRA Paper 52294, University Library of Munich, Germany.
    13. Ekaterina Sprenger, 2021. "What makes us move, what makes us stay: The role of culture in intra-EU mobility," SERIES 04-2021, Dipartimento di Economia e Finanza - Università degli Studi di Bari "Aldo Moro", revised Oct 2021.
    14. G. Serquet & M. Rebetez, 2011. "Relationship between tourism demand in the Swiss Alps and hot summer air temperatures associated with climate change," Climatic Change, Springer, vol. 108(1), pages 291-300, September.
    15. Mishenin, Yevhen & Koblianska, Inna & Yarova, Inessa & Kovalova, Olha & Bashlai, Serhii, 2023. "Food security, human health, and economy: a holistic approach to sustainable regulation," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 9(4), December.
    16. Shoupeng Zhu & Fei Ge & Yi Fan & Ling Zhang & Frank Sielmann & Klaus Fraedrich & Xiefei Zhi, 2020. "Conspicuous temperature extremes over Southeast Asia: seasonal variations under 1.5 °C and 2 °C global warming," Climatic Change, Springer, vol. 160(3), pages 343-360, June.
    17. Ignacio Díaz-Emparanza & Petr Mariel & María Victoria Esteban (ed.), 2009. "Econometrics with gretl. Proceedings of the gretl Conference 2009," UPV/EHU Books, Universidad del País Vasco - Facultad de Ciencias Económicas y Empresariales, edition 1, number 01, June.
    18. repec:jss:jstsof:25:s01 is not listed on IDEAS
    19. Bálint Balázs & Eszter Kelemen & Tiziana Centofanti & Marta W. Vasconcelos & Pietro P. M. Iannetta, 2021. "Policy Interventions Promoting Sustainable Food- and Feed-Systems: A Delphi Study of Legume Production and Consumption," Sustainability, MDPI, vol. 13(14), pages 1-43, July.
    20. A. Talha Yalta & A. Yasemin Yalta, 2007. "GRETL 1.6.0 and its numerical accuracy," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(4), pages 849-854.
    21. Ryan J. Smith & J. Wilson Mixon Jr, 2006. "Teaching undergraduate econometrics with GRETL," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(7), pages 1103-1107.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:4:p:606-:d:95708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.