IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v146y2018i3d10.1007_s10584-016-1809-8.html
   My bibliography  Save this article

Emulating mean patterns and variability of temperature across and within scenarios in anthropogenic climate change experiments

Author

Listed:
  • Stacey E. Alexeeff

    (National Center for Atmospheric Research)

  • Doug Nychka

    (National Center for Atmospheric Research)

  • Stephan R. Sain

    (National Center for Atmospheric Research)

  • Claudia Tebaldi

    (National Center for Atmospheric Research)

Abstract

There are many climate change scenarios that are of interest to explore by climate models, but computational power limits the total number of model runs. Pattern scaling is a useful approach to approximate mean changes in climate model projections, and we extend this methodology to build a climate model emulator that also accounts for variability of temperature projections at the seasonal scale. Using 30 runs from the NCAR/DOE CESM1 large initial condition ensemble for RCP8.5 from 2006 to 2080, we fit a pattern scaling model to grid-specific seasonal average temperature change. We then use this fitted model to emulate seasonal average temperature change for the RCP4.5 scenario based on its global average temperature trend. By using a linear mixed-effects model and carefully resampling the residuals from the RCP8.5 model, we emulate the variability of RCP4.5 and allow the variability to depend on global average temperature. Specifically, we emulate both the internal variability affecting the long-term trends across initial condition ensemble members, and the variability superimposed on the long-term trend within individual ensemble members. The 15 initial condition ensemble members available for RCP4.5 from the same climate model are then used to validate the emulator. We view this approach as a step forward in providing relevant climate information for avoided impacts studies, and more broadly for impact models, since we allow both forced changes and internal variability to play a role in determining future impact risks.

Suggested Citation

  • Stacey E. Alexeeff & Doug Nychka & Stephan R. Sain & Claudia Tebaldi, 2018. "Emulating mean patterns and variability of temperature across and within scenarios in anthropogenic climate change experiments," Climatic Change, Springer, vol. 146(3), pages 319-333, February.
  • Handle: RePEc:spr:climat:v:146:y:2018:i:3:d:10.1007_s10584-016-1809-8
    DOI: 10.1007/s10584-016-1809-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-016-1809-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-016-1809-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christoph Schär & Pier Luigi Vidale & Daniel Lüthi & Christoph Frei & Christian Häberli & Mark A. Liniger & Christof Appenzeller, 2004. "The role of increasing temperature variability in European summer heatwaves," Nature, Nature, vol. 427(6972), pages 332-336, January.
    2. Claudia Tebaldi & Julie Arblaster, 2014. "Pattern scaling: Its strengths and limitations, and an update on the latest model simulations," Climatic Change, Springer, vol. 122(3), pages 459-471, February.
    3. Jonathan A. Patz & Diarmid Campbell-Lendrum & Tracey Holloway & Jonathan A. Foley, 2005. "Impact of regional climate change on human health," Nature, Nature, vol. 438(7066), pages 310-317, November.
    4. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carè, R. & Weber, O., 2023. "How much finance is in climate finance? A bibliometric review, critiques, and future research directions," Research in International Business and Finance, Elsevier, vol. 64(C).
    2. Ashton Wiens & Douglas Nychka & William Kleiber, 2020. "Modeling spatial data using local likelihood estimation and a Matérn to spatial autoregressive translation," Environmetrics, John Wiley & Sons, Ltd., vol. 31(6), September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Donadelli & Marcus Jüppner & Antonio Paradiso & Christian Schlag, 2021. "Computing Macro-Effects and Welfare Costs of Temperature Volatility: A Structural Approach," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 347-394, August.
    2. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    3. Dmitry A. Ruban & Natalia N. Yashalova & Olga A. Cherednichenko & Natalya A. Dovgot’ko, 2020. "Climate Change, Agriculture, and Energy Transition: What Do the Thirty Most-Cited Articles Tell Us?," Sustainability, MDPI, vol. 12(19), pages 1-20, September.
    4. Jing-Li Fan & Bao-Jun Tang & Hao Yu & Yun-Bing Hou & Yi-Ming Wei, 2015. "Impacts of socioeconomic factors on monthly electricity consumption of China’s sectors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 2039-2047, January.
    5. Keke Li & Bofeng Cai & Zhen Wang, 2022. "Accessing the Climate Change Impacts in China through a Literature Mapping," IJERPH, MDPI, vol. 19(20), pages 1-14, October.
    6. Lucille Alonso & Florent Renard, 2020. "A Comparative Study of the Physiological and Socio-Economic Vulnerabilities to Heat Waves of the Population of the Metropolis of Lyon (France) in a Climate Change Context," IJERPH, MDPI, vol. 17(3), pages 1-21, February.
    7. Chen, Xiaoguang & Khanna, Madhu & Yang, Lu, 2021. "Rising Temperatures Reduce Economic Output of Food Processing Firms in China," 2021 Conference, August 17-31, 2021, Virtual 313797, International Association of Agricultural Economists.
    8. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    9. Bing Li & Zhifeng Liu & Ying Nan & Shengnan Li & Yanmin Yang, 2018. "Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    10. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    11. Wenfeng Chi & Yuanyuan Zhao & Wenhui Kuang & Tao Pan & Tu Ba & Jinshen Zhao & Liang Jin & Sisi Wang, 2021. "Impact of Cropland Evolution on Soil Wind Erosion in Inner Mongolia of China," Land, MDPI, vol. 10(6), pages 1-16, June.
    12. Nicolas Taconet & Aurélie Méjean & Céline Guivarch, 2020. "Influence of climate change impacts and mitigation costs on inequality between countries," Climatic Change, Springer, vol. 160(1), pages 15-34, May.
    13. Inga Dailidienė & Inesa Servaitė & Remigijus Dailidė & Erika Vasiliauskienė & Lolita Rapolienė & Ramūnas Povilanskas & Donatas Valiukas, 2023. "Increasing Trends of Heat Waves and Tropical Nights in Coastal Regions (The Case Study of Lithuania Seaside Cities)," Sustainability, MDPI, vol. 15(19), pages 1-21, September.
    14. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    15. Mariani, Fabio & Pérez-Barahona, Agustín & Raffin, Natacha, 2010. "Life expectancy and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 798-815, April.
    16. Louise Bedsworth, 2012. "California’s local health agencies and the state’s climate adaptation strategy," Climatic Change, Springer, vol. 111(1), pages 119-133, March.
    17. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    18. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    19. Zhihai Yang & Amin W. Mugera & Fan Zhang, 2016. "Investigating Yield Variability and Inefficiency in Rice Production: A Case Study in Central China," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    20. Alper Ozpinar, 2023. "A Hyper-Integrated Mobility as a Service (MaaS) to Gamification and Carbon Market Enterprise Architecture Framework for Sustainable Environment," Energies, MDPI, vol. 16(5), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:146:y:2018:i:3:d:10.1007_s10584-016-1809-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.