IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i11p2152-d119934.html
   My bibliography  Save this article

Optimization of Evacuation Warnings Prior to a Hurricane Disaster

Author

Listed:
  • Dian Sun

    (School of Economics and Management, Harbin Engineering University, Harbin 150001, China)

  • Jee Eun Kang

    (Industrial and Systems Engineering, University at Buffalo, Buffalo, NY 14260, USA)

  • Rajan Batta

    (Industrial and Systems Engineering, University at Buffalo, Buffalo, NY 14260, USA)

  • Yan Song

    (School of Economics and Management, Harbin Engineering University, Harbin 150001, China)

Abstract

The key purpose of this paper is to demonstrate that optimization of evacuation warnings by time period and impacted zone is crucial for efficient evacuation of an area impacted by a hurricane. We assume that people behave in a manner consistent with the warnings they receive. By optimizing the issuance of hurricane evacuation warnings, one can control the number of evacuees at different time intervals to avoid congestion in the process of evacuation. The warning optimization model is applied to a case study of Hurricane Sandy using the study region of Brooklyn. We first develop a model for shelter assignment and then use this outcome to model hurricane evacuation warning optimization, which prescribes an evacuation plan that maximizes the number of evacuees. A significant technical contribution is the development of an iterative greedy heuristic procedure for the nonlinear formulation, which is shown to be optimal for the case of a single evacuation zone with a single evacuee type case, while it does not guarantee optimality for multiple zones under unusual circumstances. A significant applied contribution is the demonstration of an interface of the evacuation warning method with a public transportation scheme to facilitate evacuation of a car-less population. This heuristic we employ can be readily adapted to the case where response rate is a function of evacuation number in prior periods and other variable factors. This element is also explored in the context of our experiment.

Suggested Citation

  • Dian Sun & Jee Eun Kang & Rajan Batta & Yan Song, 2017. "Optimization of Evacuation Warnings Prior to a Hurricane Disaster," Sustainability, MDPI, vol. 9(11), pages 1-29, November.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:11:p:2152-:d:119934
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/11/2152/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/11/2152/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xie, Chi & Lin, Dung-Ying & Travis Waller, S., 2010. "A dynamic evacuation network optimization problem with lane reversal and crossing elimination strategies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(3), pages 295-316, May.
    2. Cahyanto, Ignatius & Pennington-Gray, Lori & Thapa, Brijesh & Srinivasan, Siva & Villegas, Jorge & Matyas, Corene & Kiousis, Spiro, 2016. "Predicting information seeking regarding hurricane evacuation in the destination," Tourism Management, Elsevier, vol. 52(C), pages 264-275.
    3. Swamy, Rahul & Kang, Jee Eun & Batta, Rajan & Chung, Younshik, 2017. "Hurricane evacuation planning using public transportation," Socio-Economic Planning Sciences, Elsevier, vol. 59(C), pages 43-55.
    4. Shih-Kai Huang & Hao-Che Wu & Michael K. Lindell & Hung-Lung Wei & Charles D. Samuelson, 2017. "Perceptions, behavioral expectations, and implementation timing for response actions in a hurricane emergency," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 533-558, August.
    5. Alice Fothergill & Lori Peek, 2004. "Poverty and Disasters in the United States: A Review of Recent Sociological Findings," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 32(1), pages 89-110, May.
    6. Samanthi Durage & Lina Kattan & S. Wirasinghe & Janaka Ruwanpura, 2014. "Evacuation behaviour of households and drivers during a tornado," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1495-1517, April.
    7. Brodie, M. & Weltzien, E. & Altman, D. & Blendon, R.J. & Benson, J.M., 2006. "Experiences of Hurricane Katrina evacuees in Houston shelters: Implications for future planning," American Journal of Public Health, American Public Health Association, vol. 96(8), pages 1402-1408.
    8. Eisenman, D.P. & Cordasco, K.M. & Asch, S. & Golden, J.F. & Glik, D., 2007. "Disaster planning and risk communication with vulnerable communities: lessons from Hurricane Katrina," American Journal of Public Health, American Public Health Association, vol. 97(S1), pages 109-115.
    9. Sherali, Hanif D. & Carter, Todd B. & Hobeika, Antoine G., 1991. "A location-allocation model and algorithm for evacuation planning under hurricane/flood conditions," Transportation Research Part B: Methodological, Elsevier, vol. 25(6), pages 439-452, December.
    10. John C. Whitehead & Bob Edwards & Marieke Van Willigen & John R. Maiolo & Kenneth Wilson & Kevin T. Smith, 2000. "“Heading for Higher Ground: Factors Affecting Real and Hypothetical Hurricane Evacuation Behavior,”," Working Papers 0006, East Carolina University, Department of Economics.
    11. Lim, Gino J. & Zangeneh, Shabnam & Reza Baharnemati, M. & Assavapokee, Tiravat, 2012. "A capacitated network flow optimization approach for short notice evacuation planning," European Journal of Operational Research, Elsevier, vol. 223(1), pages 234-245.
    12. John Whitehead, 2005. "Environmental Risk and Averting Behavior: Predictive Validity of Jointly Estimated Revealed and Stated Behavior Data," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 32(3), pages 301-316, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dian Sun & Lupeng Zhang & Zifeng Su, 2020. "Evacuate or Stay? A Typhoon Evacuation Decision Model in China Based on the Evolutionary Game Theory in Complex Networks," IJERPH, MDPI, vol. 17(3), pages 1-17, January.
    2. Inmaculada Flores & M. Teresa Ortuño & Gregorio Tirado & Begoña Vitoriano, 2020. "Supported Evacuation for Disaster Relief through Lexicographic Goal Programming," Mathematics, MDPI, vol. 8(4), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam Pel & Michiel Bliemer & Serge Hoogendoorn, 2012. "A review on travel behaviour modelling in dynamic traffic simulation models for evacuations," Transportation, Springer, vol. 39(1), pages 97-123, January.
    2. Morris, Katherine Ann & Deterding, Nicole M., 2016. "The emotional cost of distance: Geographic social network dispersion and post-traumatic stress among survivors of Hurricane Katrina," Social Science & Medicine, Elsevier, vol. 165(C), pages 56-65.
    3. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    4. Melissa Gama & Bruno Filipe Santos & Maria Paola Scaparra, 2016. "A multi-period shelter location-allocation model with evacuation orders for flood disasters," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 299-323, September.
    5. Mozumder, Pallab & Raheem, Nejem & Talberth, John & Berrens, Robert P., 2008. "Investigating intended evacuation from wildfires in the wildland-urban interface: Application of a bivariate probit model," Forest Policy and Economics, Elsevier, vol. 10(6), pages 415-423, August.
    6. Esposito Amideo, A. & Scaparra, M.P. & Kotiadis, K., 2019. "Optimising shelter location and evacuation routing operations: The critical issues," European Journal of Operational Research, Elsevier, vol. 279(2), pages 279-295.
    7. Goerigk, Marc & Deghdak, Kaouthar & Heßler, Philipp, 2014. "A comprehensive evacuation planning model and genetic solution algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 82-97.
    8. Ma. Bernadeth B. Lim & Hector R. Lim & Mongkut Piantanakulchai & Francis Aldrine Uy, 2016. "A household-level flood evacuation decision model in Quezon City, Philippines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1539-1561, February.
    9. Bhattacharjee, Sanjoy & Petrolia, Daniel R. & Hanson, Terrill R., 2009. "Study of Evacuation Behavior of Coastal Gulf of Mexico Residents," 2009 Annual Meeting, January 31-February 3, 2009, Atlanta, Georgia 46845, Southern Agricultural Economics Association.
    10. Jennifer M. Connolly & Casey Klofstad & Joseph Uscinski, 2020. "Leaving home ain’t easy: Citizen compliance with local government hurricane evacuation orders," Journal of Behavioral Public Administration, Center for Experimental and Behavioral Public Administration, vol. 3(2).
    11. Pallab Mozumder & William F. Vásquez, 2018. "Understanding Hurricane Evacuation Decisions Under Contingent Scenarios: A Stated Preference Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(2), pages 407-425, October.
    12. David S. Dixon & Pallab Mozumder & William F. Vásquez & Hugh Gladwin, 2017. "Heterogeneity Within and Across Households in Hurricane Evacuation Response," Networks and Spatial Economics, Springer, vol. 17(2), pages 645-680, June.
    13. Rambha, Tarun & Nozick, Linda K. & Davidson, Rachel, 2021. "Modeling hurricane evacuation behavior using a dynamic discrete choice framework," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 75-100.
    14. Rebecca R. Thompson & Dana Rose Garfin & Roxane Cohen Silver, 2017. "Evacuation from Natural Disasters: A Systematic Review of the Literature," Risk Analysis, John Wiley & Sons, vol. 37(4), pages 812-839, April.
    15. Dean Kyne & William Donner, 2018. "Kyne–Donner Model of Authority’s Recommendation and Hurricane Evacuation Decisions: A Study of Hypothetical Hurricane Event in the Rio Grande Valley, Texas," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 37(6), pages 897-922, December.
    16. Laura Kuhl & Paul Kirshen & Matthias Ruth & Ellen Douglas, 2014. "Evacuation as a climate adaptation strategy for environmental justice communities," Climatic Change, Springer, vol. 127(3), pages 493-504, December.
    17. Dongkwan Lee & Soyeon Yoon & Eun-Seon Park & Yuseung Kim & D.K. Yoon, 2018. "Factors Contributing to Disaster Evacuation: The Case of South Korea," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
    18. Craig E. Landry & Okmyung Bin & Paul Hindsley & John C. Whitehead & Kenneth Wilson, 2007. "Going Home: Evacuation‐Migration Decisions of Hurricane Katrina Survivors," Southern Economic Journal, John Wiley & Sons, vol. 74(2), pages 326-343, October.
    19. Yu-Ting Hsu & Srinivas Peeta, 2013. "An aggregate approach to model evacuee behavior for no-notice evacuation operations," Transportation, Springer, vol. 40(3), pages 671-696, May.
    20. Xiaozheng He & Hong Zheng & Srinivas Peeta & Yongfu Li, 2018. "Network Design Model to Integrate Shelter Assignment with Contraflow Operations in Emergency Evacuation Planning," Networks and Spatial Economics, Springer, vol. 18(4), pages 1027-1050, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:11:p:2152-:d:119934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.