IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i10p1816-d114641.html
   My bibliography  Save this article

Effects of Conservation Tillage and Nutrient Management Practices on Soil Fertility and Productivity of Rice ( Oryza sativa L.)–Rice System in North Eastern Region of India

Author

Listed:
  • Gulab Singh Yadav

    (ICAR Research Complex for NEH Region, Tripura Centre, Tripura 799210, India
    Ohio State University, Carbon Management and Sequestration Centre, Columbus, OH 43210, USA)

  • Rahul Datta

    (Department of Geology and Pedology, Mendel University, 613 00 Brno, Czech Republic)

  • Shamina Imran Pathan

    (Department of Agricultural Sciences, Mediterranean University of Reggio, 89124 Reggio Calabria RC, Italy)

  • Rattan Lal

    (Ohio State University, Carbon Management and Sequestration Centre, Columbus, OH 43210, USA)

  • Ram Swaroop Meena

    (Ohio State University, Carbon Management and Sequestration Centre, Columbus, OH 43210, USA)

  • Subhash Babu

    (ICAR Research Complex for NEH Region, Umiam, Meghalaya 793103, India)

  • Anup Das

    (ICAR Research Complex for NEH Region, Umiam, Meghalaya 793103, India)

  • S. N. Bhowmik

    (ICAR Research Complex for NEH Region, Tripura Centre, Tripura 799210, India)

  • Mrinmoy Datta

    (College of Agriculture, Tripura University, Tripura 799022, India)

  • Poulami Saha

    (ICAR Research Complex for NEH Region, Tripura Centre, Tripura 799210, India)

  • Pawan Kumar Mishra

    (Department of Wood Processing, Mendel University, 613 00 Brno, Czech Republic)

Abstract

Over centuries and even today, traditional farming practices are well performed without any ecological degradation. However, management practice such as conservative tillage combined with nutrient and residue could increase the crop production as well as soil fertility. A three-year replicated study was conducted to assess the effects of agronomic modification of traditional farming practices on productivity and sustainability of rice (wet season)–rice (dry season) system (RRS). The replacement of farmers practice (T 2 ) with conservation effective tillage (no-till (NT)) and integrated nutrient management (INM) practice along with 30% residue retention (T 5 ) enhanced the straw, root and biomass yield of both wet season rice (WR), dry season rice (DR) and system as a whole over T 2 . Treatment T 5 recorded significantly lower soil bulk density (ρ b ) and higher pH than the T 2 after three years of the experiment. Further, treatment T 5 increased total soil organic carbon (2.8%), total soil organic carbon stock (2.8%), carbon sequestration rate (336.5 kg ha −1 year −1 ), cumulative carbon stock (142.9%) and carbon retention efficiency (141.0%) over T 2 of 0–20 cm depth after three year. The soil microbial biomass carbon concentration was significantly the highest under T 5 . Similarly, the dehydrogenase activity was the maximum under T 5 . Adoption of conservation tillage and nutrient management practice involving NT and INM along with residue retention can enhance the system productivity, and C and N sequestration in paddy soils is thereby contributing to the sustainability of the RRS.

Suggested Citation

  • Gulab Singh Yadav & Rahul Datta & Shamina Imran Pathan & Rattan Lal & Ram Swaroop Meena & Subhash Babu & Anup Das & S. N. Bhowmik & Mrinmoy Datta & Poulami Saha & Pawan Kumar Mishra, 2017. "Effects of Conservation Tillage and Nutrient Management Practices on Soil Fertility and Productivity of Rice ( Oryza sativa L.)–Rice System in North Eastern Region of India," Sustainability, MDPI, vol. 9(10), pages 1-17, October.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:10:p:1816-:d:114641
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/10/1816/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/10/1816/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Turmel, Marie-Soleil & Speratti, Alicia & Baudron, Frédéric & Verhulst, Nele & Govaerts, Bram, 2015. "Crop residue management and soil health: A systems analysis," Agricultural Systems, Elsevier, vol. 134(C), pages 6-16.
    2. Bhattacharyya, R. & Kundu, S. & Pandey, S.C. & Singh, K.P. & Gupta, H.S., 2008. "Tillage and irrigation effects on crop yields and soil properties under the rice-wheat system in the Indian Himalayas," Agricultural Water Management, Elsevier, vol. 95(9), pages 993-1002, September.
    3. Ladha, J.K. & Yadvinder-Singh & Erenstein, O. & Hardy, B. (ed.), 2009. "Integrated Crop and Resource Management in the Rice-Wheat System of South Asia," IRRI Books, International Rice Research Institute (IRRI), number 164458.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Sohail Memon & Jun Guo & Ahmed Ali Tagar & Nazia Perveen & Changying Ji & Shamim Ara Memon & Noreena Memon, 2018. "The Effects of Tillage and Straw Incorporation on Soil Organic Carbon Status, Rice Crop Productivity, and Sustainability in the Rice-Wheat Cropping System of Eastern China," Sustainability, MDPI, vol. 10(4), pages 1-14, March.
    2. Jiri Holatko & Tereza Hammerschmiedt & Rahul Datta & Tivadar Baltazar & Antonin Kintl & Oldrich Latal & Vaclav Pecina & Petr Sarec & Petr Novak & Ludmila Balakova & Subhan Danish & Muhammad Zafar-ul-H, 2020. "Humic Acid Mitigates the Negative Effects of High Rates of Biochar Application on Microbial Activity," Sustainability, MDPI, vol. 12(22), pages 1-19, November.
    3. Subhan Danish & Muhammad Zafar-ul-Hye & Shah Fahad & Shah Saud & Martin Brtnicky & Tereza Hammerschmiedt & Rahul Datta, 2020. "Drought Stress Alleviation by ACC Deaminase Producing Achromobacter xylosoxidans and Enterobacter cloacae , with and without Timber Waste Biochar in Maize," Sustainability, MDPI, vol. 12(15), pages 1-17, August.
    4. Fazli Wahid & Shah Fahad & Subhan Danish & Muhammad Adnan & Zhen Yue & Shah Saud & Manzer H. Siddiqui & Martin Brtnicky & Tereza Hammerschmiedt & Rahul Datta, 2020. "Sustainable Management with Mycorrhizae and Phosphate Solubilizing Bacteria for Enhanced Phosphorus Uptake in Calcareous Soils," Agriculture, MDPI, vol. 10(8), pages 1-14, August.
    5. Theodore Danso Marfo & Rahul Datta & Valerie Vranová & Adam Ekielski, 2019. "Ecotone Dynamics and Stability from Soil Perspective: Forest-Agriculture Land Transition," Agriculture, MDPI, vol. 9(10), pages 1-10, October.
    6. Ram Swaroop Meena & Sandeep Kumar & Rahul Datta & Rattan Lal & Vinod Vijayakumar & Martin Brtnicky & Mahaveer Prasad Sharma & Gulab Singh Yadav & Manoj Kumar Jhariya & Chetan Kumar Jangir & Shamina Im, 2020. "Impact of Agrochemicals on Soil Microbiota and Management: A Review," Land, MDPI, vol. 9(2), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ranjan Bhattacharyya & Birendra Nath Ghosh & Pradeep Dogra & Prasanta Kumar Mishra & Priyabrata Santra & Suresh Kumar & Michael Augustine Fullen & Uttam Kumar Mandal & Kokkuvayil Sankaranarayanan Anil, 2016. "Soil Conservation Issues in India," Sustainability, MDPI, vol. 8(6), pages 1-37, June.
    2. Magnan, Nicholas & Spielman, David J. & Lybbert, Travis J. & Gulati, Kajal, 2015. "Leveling with friends: Social networks and Indian farmers' demand for a technology with heterogeneous benefits," Journal of Development Economics, Elsevier, vol. 116(C), pages 223-251.
    3. Rajeev Kumar Gupta & Jagroop Kaur & Jasjit Singh Kang & Harmeet Singh & Sukhveer Kaur & Samy Sayed & Ahmed Gaber & Akbar Hossain, 2022. "Tillage in Combination with Rice Straw Retention in a Rice–Wheat System Improves the Productivity and Quality of Wheat Grain through Improving the Soil Physio-Chemical Properties," Land, MDPI, vol. 11(10), pages 1-18, September.
    4. Shekhar, Ankit & Shapiro, Charles A., 2022. "Prospective crop yield and income return based on a retrospective analysis of a long-term rainfed agriculture experiment in Nebraska," Agricultural Systems, Elsevier, vol. 198(C).
    5. Nicholas Magnan & David J Spielman & Travis J. Lybbert & Kajal Gulati, 2013. "Leveling with Friends: Social Networks and Indian Farmers’ Demand for Agricultural Custom Hire Services," Working Papers id:5591, eSocialSciences.
    6. Sidhu, H.S. & Jat, M.L. & Singh, Yadvinder & Sidhu, Ravneet Kaur & Gupta, Naveen & Singh, Parvinder & Singh, Pankaj & Jat, H.S. & Gerard, Bruno, 2019. "Sub-surface drip fertigation with conservation agriculture in a rice-wheat system: A breakthrough for addressing water and nitrogen use efficiency," Agricultural Water Management, Elsevier, vol. 216(C), pages 273-283.
    7. Agbai & Williams Perekekeme & Tate Joseph Oyinbrakemi, 2022. "The Short Term Effect Of Tillage System On Soil Moisture Retention In Bayelsa State, Nigeria," Journal of Wastes and Biomass Management (JWBM), Zibeline International Publishing, vol. 4(1), pages 45-52, October.
    8. Nirmalendu Basak & Biswapati Mandal & Sunanda Biswas & Piu Basak & Tarik Mitran & Bholanath Saha & Arvind Kumar Rai & Md. Khairul Alam & Arvind Kumar Yadav & Ashim Datta, 2022. "Impact of Long Term Nutrient Management on Soil Quality Indices in Rice-Wheat System of Lower Indo-Gangetic Plain," Sustainability, MDPI, vol. 14(11), pages 1-15, May.
    9. Shilai Zhang & Guangfu Huang & Yujiao Zhang & Xiutao Lv & Kejiang Wan & Jian Liang & Yupeng Feng & Jinrong Dao & Shukang Wu & Lin Zhang & Xu Yang & Xiaoping Lian & Liyu Huang & Lin Shao & Jing Zhang &, 2023. "Sustained productivity and agronomic potential of perennial rice," Nature Sustainability, Nature, vol. 6(1), pages 28-38, January.
    10. Vashisht, B.B. & Jalota, S.K. & Ramteke, P. & Kaur, Ramandeep & Jayeswal, D.K., 2021. "Impact of rice (O. sativa L.) straw incorporation induced changes in soil physical and chemical properties on yield, water and nitrogen–balance and –use efficiency of wheat (T. aestivum L.) in rice–wh," Agricultural Systems, Elsevier, vol. 194(C).
    11. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    12. Raymond Mugandani & Liboster Mwadzingeni & Paramu Mafongoya, 2021. "Contribution of Conservation Agriculture to Soil Security," Sustainability, MDPI, vol. 13(17), pages 1-11, September.
    13. Jiguang Zhang & Guodong Bo & Zhongfeng Zhang & Fanyu Kong & Yi Wang & Guoming Shen, 2016. "Effects of Straw Incorporation on Soil Nutrients, Enzymes, and Aggregate Stability in Tobacco Fields of China," Sustainability, MDPI, vol. 8(8), pages 1-12, July.
    14. Rajeev Kumar Gupta & Hitesh Hans & Anu Kalia & Jasjit Singh Kang & Jagroop Kaur & Paramjit Kaur Sraw & Anmol Singh & Abed Alataway & Ahmed Z. Dewidar & Mohamed A. Mattar, 2022. "Long-Term Impact of Different Straw Management Practices on Carbon Fractions and Biological Properties under Rice–Wheat System," Agriculture, MDPI, vol. 12(10), pages 1-16, October.
    15. Nisar, Shahida & Benbi, Dinesh Kumar & Toor, Amardeep Singh, 2021. "Energy budgeting and carbon footprints of three tillage systems in maize-wheat sequence of north-western Indo-Gangetic Plains," Energy, Elsevier, vol. 229(C).
    16. Le, Kieu N. & Jeong, Jaehak & Reyes, Manuel R. & Jha, Manoj K. & Gassman, Philip W. & Doro, Luca & Hok, Lyda & Boulakia, Stéphane, 2018. "Evaluation of the performance of the EPIC model for yield and biomass simulation under conservation systems in Cambodia," Agricultural Systems, Elsevier, vol. 166(C), pages 90-100.
    17. Berazneva, Julia & Lee, David R. & Place, Frank & Jakubson, George, 2018. "Allocation and Valuation of Smallholder Maize Residues in Western Kenya," Ecological Economics, Elsevier, vol. 152(C), pages 172-182.
    18. Liao, Zhenqi & Zhang, Chen & Yu, Shuolei & Lai, Zhenlin & Wang, Haidong & Zhang, Fucang & Li, Zhijun & Wu, Peng & Fan, Junliang, 2023. "Ridge-furrow planting with black film mulching increases rainfed summer maize production by improving resources utilization on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 289(C).
    19. Dao Trong Hung & Harold J. Hughes & Markus Keck & Daniela Sauer, 2019. "Rice-Residue Management Practices of Smallholder Farms in Vietnam and Their Effects on Nutrient Fluxes in the Soil-Plant System," Sustainability, MDPI, vol. 11(6), pages 1-15, March.
    20. Patience Afi Seglah & Yajing Wang & Hongyan Wang & Yuyun Bi, 2019. "Estimation and Efficient Utilization of Straw Resources in Ghana," Sustainability, MDPI, vol. 11(15), pages 1-25, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:10:p:1816-:d:114641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.