IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v166y2018icp90-100.html
   My bibliography  Save this article

Evaluation of the performance of the EPIC model for yield and biomass simulation under conservation systems in Cambodia

Author

Listed:
  • Le, Kieu N.
  • Jeong, Jaehak
  • Reyes, Manuel R.
  • Jha, Manoj K.
  • Gassman, Philip W.
  • Doro, Luca
  • Hok, Lyda
  • Boulakia, Stéphane

Abstract

Limited field studies have been performed to evaluate the impacts of conservation agriculture (CA) on crop yields and soil organic carbon sequestration in tropical conditions. In this study, we used the Environmental Policy Integrated Climate (EPIC) model to evaluate the impact of CA and conservation tillage (CT) on crop yields in tropical conditions for unique upland rice, soybean, and cassava cropping systems in Cambodia. New crop parameters were developed and tested for cassava, sesame, banana, sunn hemp, stylo, and congo grass. The results show that EPIC successfully replicated crop yields of soybean, upland rice, maize, and cassava based on R2 statistics ranging from 0.62 to 0.88 and percent bias (PBIAS) values ≤10%. However, it cannot be concluded that the model can accurately capture the biomass for all the individual crops due to limitations in the observed biomass data. The cassava and maize biomass were simulated satisfactorily, resulting in R2 values of 0.81 and 0.75, respectively. However, the computed PBIAS for the biomass estimates of the two crops were >25%. In contrast, the predicted rice and soybean biomass met PBIAS criteria (≤23%) but resulted in weak R2 statistics of ≤0.20, indicating inaccurate replications of the measured biomass. Similarly, the cover crop mean biomass and PBIAS statistics were acceptable but the R2 values were not. Overall, the model tended to overestimate the measured crop biomass. No significant difference was found in the simulated crop yields between the CA and CT treatments. However, the predicted rice and soybean results reflect an increased yield trend over time for the CA treatments, versus no discernible trend for the cassava and maize yields.

Suggested Citation

  • Le, Kieu N. & Jeong, Jaehak & Reyes, Manuel R. & Jha, Manoj K. & Gassman, Philip W. & Doro, Luca & Hok, Lyda & Boulakia, Stéphane, 2018. "Evaluation of the performance of the EPIC model for yield and biomass simulation under conservation systems in Cambodia," Agricultural Systems, Elsevier, vol. 166(C), pages 90-100.
  • Handle: RePEc:eee:agisys:v:166:y:2018:i:c:p:90-100
    DOI: 10.1016/j.agsy.2018.08.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X17305838
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2018.08.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tran, Dat & Kurkalova, Lyubov, 2016. "Dynamic modeling of bundled tillage-crop choices: impact of soil erodibility on the interactions between continuous conservation tillage and crop rotations in Iowa," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235831, Agricultural and Applied Economics Association.
    2. Balkovič, Juraj & van der Velde, Marijn & Schmid, Erwin & Skalský, Rastislav & Khabarov, Nikolay & Obersteiner, Michael & Stürmer, Bernhard & Xiong, Wei, 2013. "Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation," Agricultural Systems, Elsevier, vol. 120(C), pages 61-75.
    3. repec:dau:papers:123456789/11433 is not listed on IDEAS
    4. Hayek, F. A., 2012. "Hayek on Hayek," University of Chicago Press Economics Books, University of Chicago Press, edition 1, number 9780226321202 edited by Kresge, Stephen & Wenar, Leif, September.
    5. Billen, Norbert & Röder, Clara & Gaiser, Thomas & Stahr, Karl, 2009. "Carbon sequestration in soils of SW-Germany as affected by agricultural management—Calibration of the EPIC model for regional simulations," Ecological Modelling, Elsevier, vol. 220(1), pages 71-80.
    6. Bhattacharyya, R. & Kundu, S. & Pandey, S.C. & Singh, K.P. & Gupta, H.S., 2008. "Tillage and irrigation effects on crop yields and soil properties under the rice-wheat system in the Indian Himalayas," Agricultural Water Management, Elsevier, vol. 95(9), pages 993-1002, September.
    7. Xiong, Wei & Balkovič, Juraj & van der Velde, Marijn & Zhang, Xuesong & Izaurralde, R. César & Skalský, Rastislav & Lin, Erda & Mueller, Nathan & Obersteiner, Michael, 2014. "A calibration procedure to improve global rice yield simulations with EPIC," Ecological Modelling, Elsevier, vol. 273(C), pages 128-139.
    8. Kiniry, James R. & Major, D. J. & Izarralde, R. C. & Williams, J. R. & Gassman, Philip W. & Morrison, M. & Bergentine, R. & Zentner, R. P., 1995. "Epic Model Parameters for Cereal, Oilseed, and Forage Crops in the Northern Great Plains Region," Staff General Research Papers Archive 894, Iowa State University, Department of Economics.
    9. Thomas Hilger & Alwin Keil & Melvin Lippe & Mattiga Panomtaranichagul & Camille Saint-Macary & Manfred Zeller & Wanwisa Pansak & Dinh Tuan Vu & Georg Cadisch, 2013. "Soil Conservation on Sloping Land: Technical Options and Adoption Constraints," Post-Print hal-01686727, HAL.
    10. Philip W. Gassman & Jimmy R. Williams & Verel W. Benson & R. César Izaurralde & Larry M. Hauck & C. Allan Jones & Jay D. Atwood & James Kiniry & Joan D. Flowers, 2005. "Historical Development and Applications of the EPIC and APEX Models," Center for Agricultural and Rural Development (CARD) Publications 05-wp397, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    11. Cabelguenne, M. & Debaeke, P. & Bouniols, A., 1999. "EPICphase, a version of the EPIC model simulating the effects of water and nitrogen stress on biomass and yield, taking account of developmental stages: validation on maize, sunflower, sorghum, soybea," Agricultural Systems, Elsevier, vol. 60(3), pages 175-196, June.
    12. Kieu N. Le & Manoj K. Jha & Jaehak Jeong & Philip W. Gassman & Manuel R. Reyes & Luca Doro & Dat Q. Tran & Lyda Hok, 2018. "Evaluation of Long-Term SOC and Crop Productivity within Conservation Systems Using GFDL CM2.1 and EPIC," Sustainability, MDPI, vol. 10(8), pages 1-17, July.
    13. McCown, R. L. & Hammer, G. L. & Hargreaves, J. N. G. & Holzworth, D. P. & Freebairn, D. M., 1996. "APSIM: a novel software system for model development, model testing and simulation in agricultural systems research," Agricultural Systems, Elsevier, vol. 50(3), pages 255-271.
    14. Doraiswamy, P.C. & McCarty, G.W. & Hunt, E.R. Jr. & Yost, R.S. & Doumbia, M. & Franzluebbers, A.J., 2007. "Modeling soil carbon sequestration in agricultural lands of Mali," Agricultural Systems, Elsevier, vol. 94(1), pages 63-74, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sam R. Carroll & Kieu Ngoc Le & Beatriz Moreno-García & Benjamin R. K. Runkle, 2020. "Simulating Soybean–Rice Rotation and Irrigation Strategies in Arkansas, USA Using APEX," Sustainability, MDPI, vol. 12(17), pages 1-17, August.
    2. Soltani, A. & Alimagham, S.M. & Nehbandani, A. & Torabi, B. & Zeinali, E. & Dadrasi, A. & Zand, E. & Ghassemi, S. & Pourshirazi, S. & Alasti, O. & Hosseini, R.S. & Zahed, M. & Arabameri, R. & Mohammad, 2020. "SSM-iCrop2: A simple model for diverse crop species over large areas," Agricultural Systems, Elsevier, vol. 182(C).
    3. Kieu N. Le & Manoj K. Jha & Jaehak Jeong & Philip W. Gassman & Manuel R. Reyes & Luca Doro & Dat Q. Tran & Lyda Hok, 2018. "Evaluation of Long-Term SOC and Crop Productivity within Conservation Systems Using GFDL CM2.1 and EPIC," Sustainability, MDPI, vol. 10(8), pages 1-17, July.
    4. McClelland, Shelby C. & Paustian, Keith & Williams, Stephen & Schipanski, Meagan E., 2021. "Modeling cover crop biomass production and related emissions to improve farm-scale decision-support tools," Agricultural Systems, Elsevier, vol. 191(C).
    5. Giannini, Vittoria & Mula, Laura & Carta, Marcella & Patteri, Giacomo & Roggero, Pier Paolo, 2022. "Interplay of irrigation strategies and sowing dates on sunflower yield in semi-arid Mediterranean areas," Agricultural Water Management, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kieu N. Le & Manoj K. Jha & Jaehak Jeong & Philip W. Gassman & Manuel R. Reyes & Luca Doro & Dat Q. Tran & Lyda Hok, 2018. "Evaluation of Long-Term SOC and Crop Productivity within Conservation Systems Using GFDL CM2.1 and EPIC," Sustainability, MDPI, vol. 10(8), pages 1-17, July.
    2. Wang, Zhiqiang & Ye, Li & Jiang, Jingyi & Fan, Yida & Zhang, Xiaoran, 2022. "Review of application of EPIC crop growth model," Ecological Modelling, Elsevier, vol. 467(C).
    3. Tatsumi, Kenichi, 2016. "Effects of automatic multi-objective optimization of crop models on corn yield reproducibility in the U.S.A," Ecological Modelling, Elsevier, vol. 322(C), pages 124-137.
    4. Yunfeng Li & Quanqing Feng & Dongwei Li & Mingfa Li & Huifeng Ning & Qisheng Han & Abdoul Kader Mounkaila Hamani & Yang Gao & Jingsheng Sun, 2022. "Water-Salt Thresholds of Cotton ( Gossypium hirsutum L.) under Film Drip Irrigation in Arid Saline-Alkali Area," Agriculture, MDPI, vol. 12(11), pages 1-21, October.
    5. Xiong, Wei & Balkovič, Juraj & van der Velde, Marijn & Zhang, Xuesong & Izaurralde, R. César & Skalský, Rastislav & Lin, Erda & Mueller, Nathan & Obersteiner, Michael, 2014. "A calibration procedure to improve global rice yield simulations with EPIC," Ecological Modelling, Elsevier, vol. 273(C), pages 128-139.
    6. Cabelguenne, M. & Debaeke, P. & Bouniols, A., 1999. "EPICphase, a version of the EPIC model simulating the effects of water and nitrogen stress on biomass and yield, taking account of developmental stages: validation on maize, sunflower, sorghum, soybea," Agricultural Systems, Elsevier, vol. 60(3), pages 175-196, June.
    7. Dennis Junior Choruma & Frank Chukwuzuoke Akamagwuna & Nelson Oghenekaro Odume, 2022. "Simulating the Impacts of Climate Change on Maize Yields Using EPIC: A Case Study in the Eastern Cape Province of South Africa," Agriculture, MDPI, vol. 12(6), pages 1-24, May.
    8. Ascough II, J.C. & Andales, A.A. & Sherrod, L.A. & McMaster, G.S. & Hansen, N.C. & DeJonge, K.C. & Fathelrahman, E.M. & Ahuja, L.R. & Peterson, G.A. & Hoag, D.L., 2010. "Simulating landscape catena effects in no-till dryland agroecosystems using GPFARM," Agricultural Systems, Elsevier, vol. 103(8), pages 569-584, October.
    9. Balkovič, Juraj & van der Velde, Marijn & Schmid, Erwin & Skalský, Rastislav & Khabarov, Nikolay & Obersteiner, Michael & Stürmer, Bernhard & Xiong, Wei, 2013. "Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation," Agricultural Systems, Elsevier, vol. 120(C), pages 61-75.
    10. Choruma, Dennis Junior & Balkovic, Juraj & Pietsch, Stephan Alexander & Odume, Oghenekaro Nelson, 2021. "Using EPIC to simulate the effects of different irrigation and fertilizer levels on maize yield in the Eastern Cape, South Africa," Agricultural Water Management, Elsevier, vol. 254(C).
    11. Abi Saab, Marie Therese & Todorovic, Mladen & Albrizio, Rossella, 2015. "Comparing AquaCrop and CropSyst models in simulating barley growth and yield under different water and nitrogen regimes. Does calibration year influence the performance of crop growth models?," Agricultural Water Management, Elsevier, vol. 147(C), pages 21-33.
    12. Lychuk, Taras E. & Moulin, Alan P. & Lemke, Reynald L. & Izaurralde, Roberto C. & Johnson, Eric N. & Olfert, Owen O. & Brandt, Stewart A., 2021. "Modelling the effects of climate change, agricultural inputs, cropping diversity, and environment on soil nitrogen and phosphorus: A case study in Saskatchewan, Canada," Agricultural Water Management, Elsevier, vol. 252(C).
    13. van Zelm, Rosalie & van der Velde, Marijn & Balkovic, Juraj & Čengić, Mirza & Elshout, Pieter M.F. & Koellner, Thomas & Núñez, Montserrat & Obersteiner, Michael & Schmid, Erwin & Huijbregts, Mark , 2018. "Spatially explicit life cycle impact assessment for soil erosion from global crop production," Ecosystem Services, Elsevier, vol. 30(PB), pages 220-227.
    14. Zhang, Yuanhong & Peng, Xingxing & Ning, Fang & Dong, Zhaoyang & Wang, Rui & Li, Jun, 2022. "Assessing the response of orchard productivity to soil water depletion using field sampling and modeling methods," Agricultural Water Management, Elsevier, vol. 273(C).
    15. Rossetto, Rudy & De Filippis, Giovanna & Triana, Federico & Ghetta, Matteo & Borsi, Iacopo & Schmid, Wolfgang, 2019. "Software tools for management of conjunctive use of surface- and ground-water in the rural environment: integration of the Farm Process and the Crop Growth Module in the FREEWAT platform," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    16. Choi, Hyung Sik & Schneider, Uwe A. & Rasche, Livia & Cui, Junbo & Schmid, Erwin & Held, Hermann, 2015. "Potential effects of perfect seasonal climate forecasting on agricultural markets, welfare and land use: A case study of Spain," Agricultural Systems, Elsevier, vol. 133(C), pages 177-189.
    17. William R. Morgan, 2023. "Finance Must Be Defended: Cybernetics, Neoliberalism and Environmental, Social, and Governance (ESG)," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    18. Jael, Paul, 2015. "Socialist Calculation and Market Socialism," MPRA Paper 64255, University Library of Munich, Germany.
    19. Lychuk, Taras E. & Hill, Robert L. & Izaurralde, Roberto C. & Momen, Bahram & Thomson, Allison M., 2021. "Evaluation of climate change impacts and effectiveness of adaptation options on nitrate loss, microbial respiration, and soil organic carbon in the Southeastern USA," Agricultural Systems, Elsevier, vol. 193(C).
    20. Sezen, S.M. & Yazar, A. & Kapur, B. & Tekin, S., 2011. "Comparison of drip and sprinkler irrigation strategies on sunflower seed and oil yield and quality under Mediterranean climatic conditions," Agricultural Water Management, Elsevier, vol. 98(7), pages 1153-1161, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:166:y:2018:i:c:p:90-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.