IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i7p609-d72967.html
   My bibliography  Save this article

Extent of Cropland and Related Soil Erosion Risk in Rwanda

Author

Listed:
  • Fidele Karamage

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    Faculty of Environmental Sciences, University of Lay Adventists of Kigali (UNILAK), P.O. 6392, Kigali, Rwanda)

  • Chi Zhang

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    School of Resources Environment Science and Engineering, Hubei University of Science and Technology, Xianning 430000, China)

  • Felix Ndayisaba

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    Faculty of Environmental Sciences, University of Lay Adventists of Kigali (UNILAK), P.O. 6392, Kigali, Rwanda)

  • Hua Shao

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Alphonse Kayiranga

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    Faculty of Environmental Sciences, University of Lay Adventists of Kigali (UNILAK), P.O. 6392, Kigali, Rwanda)

  • Xia Fang

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Lamek Nahayo

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    Faculty of Environmental Sciences, University of Lay Adventists of Kigali (UNILAK), P.O. 6392, Kigali, Rwanda)

  • Enan Muhire Nyesheja

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    Faculty of Environmental Sciences, University of Lay Adventists of Kigali (UNILAK), P.O. 6392, Kigali, Rwanda)

  • Guangjin Tian

    (State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China)

Abstract

Land conversion to cropland is one of the major causes of severe soil erosion in Africa. This study assesses the current cropland extent and the related soil erosion risk in Rwanda, a country that experienced the most rapid population growth and cropland expansion in Africa over the last decade. The land cover land use (LCLU) map of Rwanda in 2015 was developed using Landsat-8 imagery. Based on the obtained LCLU map and the spatial datasets of precipitation, soil properties and elevation, the soil erosion rate of Rwanda was assessed at 30-m spatial resolution, using the Revised Universal Soil Loss Equation (RUSLE) model. According to the results, the mean soil erosion rate was 250 t·ha −1 ·a −1 over the entire country, with a total soil loss rate of approximately 595 million tons per year. The mean soil erosion rate over cropland, which occupied 56% of the national land area, was estimated at 421 t·ha −1 ·a −1 and was responsible for about 95% of the national soil loss. About 24% of the croplands in Rwanda had a soil erosion rate larger than 300 t·ha −1 ·a −1 , indicating their unsuitability for cultivation. With a mean soil erosion rate of 1642 t·ha −1 ·a −1 , these unsuitable croplands were responsible for 90% of the national soil loss. Most of the unsuitable croplands are distributed in the Congo Nile Ridge, Volcanic Range mountain areas in the west and the Buberuka highlands in the north, regions characterized by steep slopes (>30%) and strong rainfall. Soil conservation practices, such as the terracing cultivation method, are paramount to preserve the soil. According to our assessment, terracing alone could reduce the mean cropland soil erosion rate and the national soil loss by 79% and 75%, respectively. After terracing, only a small proportion of 7.6% of the current croplands would still be exposed to extreme soil erosion with a rate >300 t·ha −1 ·a −1 . These irremediable cropland areas should be returned to mountain forest to foster environmental sustainability or further sustainable alternative erosion control techniques may be applied, such as applying Vetiver Eco-engineering Technology due to its economical soil erosion control and stabilization of steep slopes and the construction of erosion control dams to absorb and break down excess runoff from unusually intense storms in various parts of the watersheds.

Suggested Citation

  • Fidele Karamage & Chi Zhang & Felix Ndayisaba & Hua Shao & Alphonse Kayiranga & Xia Fang & Lamek Nahayo & Enan Muhire Nyesheja & Guangjin Tian, 2016. "Extent of Cropland and Related Soil Erosion Risk in Rwanda," Sustainability, MDPI, vol. 8(7), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:7:p:609-:d:72967
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/7/609/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/7/609/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Julio A. Cárcamo & Jeffrey Alwang & George W. Norton, 1994. "On‐site economic evaluation of soil conservation practices in Honduras," Agricultural Economics, International Association of Agricultural Economists, vol. 11(2-3), pages 257-269, December.
    2. Edward B. Barbier, 1990. "The Farm-Level Economics of Soil Conservation: The Uplands of Java," Land Economics, University of Wisconsin Press, vol. 66(2), pages 199-211.
    3. Chism, John W. & Levins, Richard A. & Honadle, Beth & Wang, Yin, 1994. "Minnesota Agricultural Economist no. 676," Minnesota Applied Economist\Minnesota Agricultural Economist 206493, University of Minnesota, Department of Applied Economics.
    4. J. Meigh & A. McKenzie & K. Sene, 1999. "A Grid-Based Approach to Water Scarcity Estimates for Eastern and Southern Africa," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 13(2), pages 85-115, April.
    5. Clay, Daniel C. & Lewis, Laurence A., 1996. "Land Use, Soil Loss and Sustainable Agriculture in Rwanda," Food Security Collaborative Working Papers 55057, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richard Mind’je & Lanhai Li & Jean Baptiste Nsengiyumva & Christophe Mupenzi & Enan Muhire Nyesheja & Patient Mindje Kayumba & Aboubakar Gasirabo & Egide Hakorimana, 2020. "Landslide susceptibility and influencing factors analysis in Rwanda," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7985-8012, December.
    2. Félicien Majoro & Umaru Garba Wali & Omar Munyaneza & François-Xavier Naramabuye, 2023. "Sustainability Analysis of Soil Erosion Control in Rwanda: Case Study of the Sebeya Watershed," Sustainability, MDPI, vol. 15(3), pages 1-22, January.
    3. Albert Poponi Maniraho & Richard Mind’je & Wenjiang Liu & Vincent Nzabarinda & Patient Mindje Kayumba & Lamek Nahayo & Adeline Umugwaneza & Solange Uwamahoro & Lanhai Li, 2021. "Application of the Adapted Approach for Crop Management Factor to Assess Soil Erosion Risk in an Agricultural Area of Rwanda," Land, MDPI, vol. 10(10), pages 1-24, October.
    4. Dawit Samuel Teshome & Mitiku Badasa Moisa & Dessalegn Obsi Gemeda & Songcai You, 2022. "Effect of Land Use-Land Cover Change on Soil Erosion and Sediment Yield in Muger Sub-Basin, Upper Blue Nile Basin, Ethiopia," Land, MDPI, vol. 11(12), pages 1-20, November.
    5. Félicien Majoro & Umaru Garba Wali, 2022. "Analyzing Various Factors Affecting Farmers’ Willingness to Adopt Soil Erosion Control Measures in the Sebeya Catchment, Rwanda," Sustainability, MDPI, vol. 14(19), pages 1-16, October.
    6. Gezahegn Weldu Woldemariam & Arus Edo Harka, 2020. "Effect of Land Use and Land Cover Change on Soil Erosion in Erer Sub-Basin, Northeast Wabi Shebelle Basin, Ethiopia," Land, MDPI, vol. 9(4), pages 1-25, April.
    7. Gezahegn Weldu Woldemariam & Anteneh Derribew Iguala & Solomon Tekalign & Ramireddy Uttama Reddy, 2018. "Spatial Modeling of Soil Erosion Risk and Its Implication for Conservation Planning: the Case of the Gobele Watershed, East Hararghe Zone, Ethiopia," Land, MDPI, vol. 7(1), pages 1-25, February.
    8. Taingaun Sourn & Sophak Pok & Phanith Chou & Nareth Nut & Dyna Theng & P. V. Vara Prasad, 2022. "Assessment of Land Use and Land Cover Changes on Soil Erosion Using Remote Sensing, GIS and RUSLE Model: A Case Study of Battambang Province, Cambodia," Sustainability, MDPI, vol. 14(7), pages 1-24, March.
    9. Jean Baptiste Nsengiyumva & Geping Luo & Lamek Nahayo & Xiaotao Huang & Peng Cai, 2018. "Landslide Susceptibility Assessment Using Spatial Multi-Criteria Evaluation Model in Rwanda," IJERPH, MDPI, vol. 15(2), pages 1-23, January.
    10. Geoffrey Gasore & Helene Ahlborg & Etienne Ntagwirumugara & Daniel Zimmerle, 2021. "Progress for On-Grid Renewable Energy Systems: Identification of Sustainability Factors for Small-Scale Hydropower in Rwanda," Energies, MDPI, vol. 14(4), pages 1-16, February.
    11. Walter Ocimati & Jeroen J. C. Groot & Pablo Tittonell & Godfrey Taulya & Jules Ntamwira & Serge Amato & Guy Blomme, 2020. "Xanthomonas Wilt of Banana Drives Changes in Land-Use and Ecosystem Services Across Infected Landscapes," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    12. Guokun Chen & Zengxiang Zhang & Qiankun Guo & Xiao Wang & Qingke Wen, 2019. "Quantitative Assessment of Soil Erosion Based on CSLE and the 2010 National Soil Erosion Survey at Regional Scale in Yunnan Province of China," Sustainability, MDPI, vol. 11(12), pages 1-23, June.
    13. Fidele Karamage & Chi Zhang & Alphonse Kayiranga & Hua Shao & Xia Fang & Felix Ndayisaba & Lamek Nahayo & Christophe Mupenzi & Guangjin Tian, 2016. "USLE-Based Assessment of Soil Erosion by Water in the Nyabarongo River Catchment, Rwanda," IJERPH, MDPI, vol. 13(8), pages 1-16, August.
    14. Jean de Dieu Nambajimana & Xiubin He & Ji Zhou & Meta Francis Justine & Jinlin Li & Dil Khurram & Richard Mind’je & Gratien Nsabimana, 2019. "Land Use Change Impacts on Water Erosion in Rwanda," Sustainability, MDPI, vol. 12(1), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fidele Karamage & Chi Zhang & Alphonse Kayiranga & Hua Shao & Xia Fang & Felix Ndayisaba & Lamek Nahayo & Christophe Mupenzi & Guangjin Tian, 2016. "USLE-Based Assessment of Soil Erosion by Water in the Nyabarongo River Catchment, Rwanda," IJERPH, MDPI, vol. 13(8), pages 1-16, August.
    2. Jean de Dieu Nambajimana & Xiubin He & Ji Zhou & Meta Francis Justine & Jinlin Li & Dil Khurram & Richard Mind’je & Gratien Nsabimana, 2019. "Land Use Change Impacts on Water Erosion in Rwanda," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    3. Albert Poponi Maniraho & Richard Mind’je & Wenjiang Liu & Vincent Nzabarinda & Patient Mindje Kayumba & Lamek Nahayo & Adeline Umugwaneza & Solange Uwamahoro & Lanhai Li, 2021. "Application of the Adapted Approach for Crop Management Factor to Assess Soil Erosion Risk in an Agricultural Area of Rwanda," Land, MDPI, vol. 10(10), pages 1-24, October.
    4. Alice Issanchou & Karine Daniel & Pierre Dupraz & Carole Ropars-Collet, 2018. "Soil resource and the profitability and sustainability of farms: A soil quality investment model," Working Papers SMART 18-01, INRAE UMR SMART.
    5. Coxhead, Ian A. & Demeke, Bayou, 2006. "Modeling Spatially Differentiated Environmental Policy in a Philippine Watershed: Tradeoffs between Environmental Protection and Poverty Reduction," 2006 Annual meeting, July 23-26, Long Beach, CA 21115, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    6. Robyn Horan & Pawan S. Wable & Veena Srinivasan & Helen E. Baron & Virginie J. D. Keller & Kaushal K. Garg & Nathan Rickards & Mike Simpson & Helen A. Houghton-Carr & H. Gwyn Rees, 2021. "Modelling Small-Scale Storage Interventions in Semi-Arid India at the Basin Scale," Sustainability, MDPI, vol. 13(11), pages 1-28, May.
    7. Abdelgalil, E.A. & Cohen, S.I., 2007. "Economic development and resource degradation: Conflicts and policies," Socio-Economic Planning Sciences, Elsevier, vol. 41(2), pages 107-129, June.
    8. Abdelgalil, E. A. & Cohen, S. I., 2001. "Policy modelling of the trade-off between agricultural development and land degradation--the Sudan case," Journal of Policy Modeling, Elsevier, vol. 23(8), pages 847-874, November.
    9. World Bank, 2007. "Determinants of the Adoption of Sustainable Land Management Practices and Their Impacts in the Ethiopian Highlands," World Bank Publications - Reports 7938, The World Bank Group.
    10. F. Jorge Bornemann & David P. Rowell & Barbara Evans & Dan J. Lapworth & Kamazima Lwiza & David M.J. Macdonald & John H. Marsham & Kindie Tesfaye & Matthew J. Ascott & Celia Way, 2019. "Future changes and uncertainty in decision-relevant measures of East African climate," Climatic Change, Springer, vol. 156(3), pages 365-384, October.
    11. Rahelizatovo, Noro C. & Gillespie, Jeffrey M., 2004. "The Adoption of Best-Management Practices by Louisiana Dairy Producers," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 36(1), pages 229-240, April.
    12. Stefano Pagiola, 2004. "Deforestation and Land Use Changes Induced by the East Asian Economic Crisis," Others 0405006, University Library of Munich, Germany.
    13. Grepperud, Sverre, 1995. "Soil conservation and governmental policies in tropical areas: Does aid worsen the incentives for arresting erosion?," Agricultural Economics, Blackwell, vol. 12(2), pages 129-140, August.
    14. Hatem Jemmali & Mohamed Salah Matoussi, 2012. "A Multidimensional Analysis of Water Poverty at A Local Scale- Application of Improved Water Poverty Index for Tunisia," Working Papers 730, Economic Research Forum, revised 2012.
    15. Pascual, Unai & Barbier, Edward B., 2003. "Modelling Land Degradation In Low-Input Agriculture: The 'Population Pressure Hypothesis' Revised," 2003 Annual Meeting, August 16-22, 2003, Durban, South Africa 25827, International Association of Agricultural Economists.
    16. Bayard, Budry & Jolly, Curtis, 2007. "Environmental behavior structure and socio-economic conditions of hillside farmers: A multiple-group structural equation modeling approach," Ecological Economics, Elsevier, vol. 62(3-4), pages 433-440, May.
    17. Gilles Lafforgue & Walid Oueslati, 2007. "Optimal soil management and environmental policy," Economics Bulletin, AccessEcon, vol. 17(3), pages 1-10.
    18. Tran Dinh Thao, 2016. "On-Site Costs and Benefits of Soil Conservation in the Mountainous Regions of Northern Vietnam," EEPSEA Research Report rr2016061, Economy and Environment Program for Southeast Asia (EEPSEA), revised Apr 2016.
    19. Mohamed Hamouda & Mohamed Nour El-Din & Fawzia Moursy, 2009. "Vulnerability Assessment of Water Resources Systems in the Eastern Nile Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(13), pages 2697-2725, October.
    20. Eskander, Shaikh M.S.U & Barbier, Edward B., 2015. "Tenure security and soil conservation in an overlapping generation rural economy," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205225, Agricultural and Applied Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:7:p:609-:d:72967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.