IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i6p537-d71509.html
   My bibliography  Save this article

Optimization of an Improved Intermodal Transit Model Equipped with Feeder Bus and Railway Systems Using Metaheuristics Approaches

Author

Listed:
  • Mohammad Hadi Almasi

    (School of Civil, Environmental and Architectural Engineering, Korea University, 136-713 Seoul, Korea)

  • Ali Sadollah

    (Strategic Center for Energy and Sustainable Development, Semnan branch, Islamic Azad University, Semnan, Iran)

  • Seungmo Kang

    (School of Civil, Environmental and Architectural Engineering, Korea University, 136-713 Seoul, Korea)

  • Mohamed Rehan Karim

    (Center for transportation research (CTR), Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia)

Abstract

One of the serious concerns in network design is creating an efficient and appropriate network capable of efficiently migrating the passenger’s mode of transportation from private to public. The main goal of this study is to present an improved model for combining the feeder bus network design system and the railway transit system while minimizing total cost. In this study, the imperialist competitive algorithm (ICA) and the water cycle algorithm (WCA) were employed to optimize feeder bus and railway services. The case study and input data were based on a real transit network in Petaling Jaya, Kuala Lumpur, Malaysia. Numerical results for the proposed model, including the optimal solution, statistical optimization results and the convergence rate, as well as comparisons are discussed in detail.

Suggested Citation

  • Mohammad Hadi Almasi & Ali Sadollah & Seungmo Kang & Mohamed Rehan Karim, 2016. "Optimization of an Improved Intermodal Transit Model Equipped with Feeder Bus and Railway Systems Using Metaheuristics Approaches," Sustainability, MDPI, vol. 8(6), pages 1-27, June.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:6:p:537-:d:71509
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/6/537/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/6/537/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Steven I-JY Chien, 2005. "Optimization Of Headway, Vehicle Size and Route Choice for Minimum Cost Feeder Service," Transportation Planning and Technology, Taylor & Francis Journals, vol. 28(5), pages 359-380, August.
    2. Lucio Martins, Carlos & Vaz Pato, Margarida, 1998. "Search strategies for the feeder bus network design problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 425-440, April.
    3. S. C. Wirasinghe & L. Kattan & M. M. Rahman & J. Hubbell & R. Thilakaratne & S. Anowar, 2013. "Bus rapid transit - a review," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 17(1), pages 1-31, March.
    4. Shoaib M. Chowdhury & Steven I-Jy Chien, 2002. "Intermodal Transit System Coordination," Transportation Planning and Technology, Taylor & Francis Journals, vol. 25(4), pages 257-287, January.
    5. Avishai (Avi) Ceder & Stephan Hassold & Christopher Dunlop & Iris Chen, 2013. "Improving urban public transport service using new timetabling strategies with different vehicle sizes," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 17(2), pages 239-258, July.
    6. Shrivastava, Prabhat & O'Mahony, Margaret, 2006. "A model for development of optimized feeder routes and coordinated schedules--A genetic algorithms approach," Transport Policy, Elsevier, vol. 13(5), pages 413-425, September.
    7. Ali Gholami & Afshin Shariat Mohaymany, 2011. "Economic conditions for minibus usage in a multimodal feeder network," Transportation Planning and Technology, Taylor & Francis Journals, vol. 34(8), pages 839-856, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Hadi Almasi & Ali Sadollah & Yoonseok Oh & Dong-Kyu Kim & Seungmo Kang, 2018. "Optimal Coordination Strategy for an Integrated Multimodal Transit Feeder Network Design Considering Multiple Objectives," Sustainability, MDPI, vol. 10(3), pages 1-28, March.
    2. Wei Wu & Wanjing Ma & Kejun Long & Heping Zhou & Yi Zhang, 2016. "Designing Sustainable Public Transportation: Integrated Optimization of Bus Speed and Holding Time in a Connected Vehicle Environment," Sustainability, MDPI, vol. 8(11), pages 1-15, November.
    3. Dražen Žgaljić & Edvard Tijan & Alen Jugović & Tanja Poletan Jugović, 2019. "Implementation of Sustainable Motorways of the Sea Services Multi-Criteria Analysis of a Croatian Port System," Sustainability, MDPI, vol. 11(23), pages 1-21, December.
    4. Michał Baran & Duszan Józef Augustyn, 2021. "The Evaluation of Transport Exclusion in the Peripheral Cross-Border Areas of Central Europe in the Context of Applicability of Information-Based Carpooling," Sustainability, MDPI, vol. 13(6), pages 1-21, March.
    5. Edvard Tijan & Adrijana Agatić & Marija Jović & Saša Aksentijević, 2019. "Maritime National Single Window—A Prerequisite for Sustainable Seaport Business," Sustainability, MDPI, vol. 11(17), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Jinpeng & Wu, Jianjun & Gao, Ziyou & Sun, Huijun & Yang, Xin & Lo, Hong K., 2019. "Bus transit network design with uncertainties on the basis of a metro network: A two-step model framework," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 115-138.
    2. Liang, Jinpeng & Wu, Jianjun & Qu, Yunchao & Yin, Haodong & Qu, Xiaobo & Gao, Ziyou, 2019. "Robust bus bridging service design under rail transit system disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 132(C), pages 97-116.
    3. Bo Sun & Ming Wei & Chunfeng Yang & Zhihuo Xu & Han Wang, 2018. "Personalised and Coordinated Demand-Responsive Feeder Transit Service Design: A Genetic Algorithms Approach," Future Internet, MDPI, vol. 10(7), pages 1-14, July.
    4. Badia, Hugo & Jenelius, Erik, 2021. "Design and operation of feeder systems in the era of automated and electric buses," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 146-172.
    5. Sivakumaran, Karthikgeyan & Li, Yuwei & Cassidy, Michael J. & Madanat, Samer, 2010. "Cost-Saving Properties of Schedule Coordination in a Simple Trunk-and-Feeder Transit System," University of California Transportation Center, Working Papers qt9qr8s3hx, University of California Transportation Center.
    6. GALARZA MONTENEGRO, Bryan David & SÖRENSEN, Kenneth & VANSTEENWEGEN, Pieter, 2023. "A demand-responsive feeder service with a maximum headway at mandatory stops," Working Papers 2023001, University of Antwerp, Faculty of Business and Economics.
    7. Liang Gong & Yinzhen Li & Dejie Xu, 2019. "Combinational Scheduling Model Considering Multiple Vehicle Sizes," Sustainability, MDPI, vol. 11(19), pages 1-14, September.
    8. Anastasios Charisis & Christina Iliopoulou & Konstantinos Kepaptsoglou, 2018. "DRT route design for the first/last mile problem: model and application to Athens, Greece," Public Transport, Springer, vol. 10(3), pages 499-527, December.
    9. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    10. Sivakumaran, Karthik & Li, Yuwei & Cassidy, Michael & Madanat, Samer, 2014. "Access and the choice of transit technology," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 204-221.
    11. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou & Ma, Changxi, 2019. "Stochastic bus schedule coordination considering demand assignment and rerouting of passengers," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 275-303.
    12. Kim, Myungseob (Edward) & Schonfeld, Paul, 2014. "Integration of conventional and flexible bus services with timed transfers," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 76-97.
    13. Islam, Md. Kamrul & Vandenbona, Upali & Dixit, Vinayak V. & Sharma, Ashish, 2015. "A Simplified Method for Performance Evaluation of Public Transit Under Reneging Behavior of Passengers," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 54(3).
    14. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou, 2016. "Designing robust schedule coordination scheme for transit networks with safety control margins," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 495-519.
    15. Yu, Yao & Machemehl, Randy B. & Xie, Chi, 2015. "Demand-responsive transit circulator service network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 160-175.
    16. Chen, Zhiwei & Li, Xiaopeng, 2021. "Designing corridor systems with modular autonomous vehicles enabling station-wise docking: Discrete modeling method," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    17. Liu, Tao & (Avi) Ceder, Avishai, 2017. "Deficit function related to public transport: 50 year retrospective, new developments, and prospects," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 1-19.
    18. Manser, Patrick & Becker, Henrik & Hörl, Sebastian & Axhausen, Kay W., 2020. "Designing a large-scale public transport network using agent-based microsimulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 1-15.
    19. Park, Chung & Lee, Jungpyo & Sohn, So Young, 2019. "Recommendation of feeder bus routes using neural network embedding-based optimization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 329-341.
    20. Singh, Harpreet & Kathuria, Ankit, 2023. "Heterogeneity in passenger satisfaction of bus rapid transit system among age and gender groups: A PLS-SEM Multi-group analysis," Transport Policy, Elsevier, vol. 141(C), pages 27-41.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:6:p:537-:d:71509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.