IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i7p8223-8239d51671.html
   My bibliography  Save this article

Compilation of an Embodied CO 2 Emission Inventory for China Using 135-Sector Input-Output Tables

Author

Listed:
  • Qian Zhang

    (Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan)

  • Jun Nakatani

    (Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan)

  • Yuichi Moriguchi

    (Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan)

Abstract

A high-quality carbon dioxide (CO 2 ) inventory is the cornerstone of climate change mitigation. Most of the previously reported embodied CO 2 inventories in China have no more than 42 sectors, and this limitation may introduce apparent inaccuracy into the analysis at the sector level. To improve the quality of input-output (IO)-based CO 2 inventories for China, we propose a practical energy allocation approach to link the energy statistics to the 135-sector IO tables for China and compiled a detailed embodied CO 2 intensity and inventory for 2007 using a single-region IO model. Interpretation of embodied CO 2 intensities by fuel category, direct requirement, and total requirement in the sectors were conducted to identify, from different perspectives, the significant contributors. The total embodied CO 2 emissions in 2007 was estimated to be 7.1 Gt and was separated into the industrial sector and final demand sector. Although the total CO 2 estimations by the 42-sector and 135-sector analyses are equivalent, the allocations in certain groups of sectors differ significantly. Our compilation methodologies address indirect environmental impacts from industrial sectors, including the public utility and tertiary sectors. This method of interpretation could be utilized for better communication with stakeholders.

Suggested Citation

  • Qian Zhang & Jun Nakatani & Yuichi Moriguchi, 2015. "Compilation of an Embodied CO 2 Emission Inventory for China Using 135-Sector Input-Output Tables," Sustainability, MDPI, vol. 7(7), pages 1-17, June.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:7:p:8223-8239:d:51671
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/7/8223/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/7/8223/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Su, Bin & Huang, H.C. & Ang, B.W. & Zhou, P., 2010. "Input-output analysis of CO2 emissions embodied in trade: The effects of sector aggregation," Energy Economics, Elsevier, vol. 32(1), pages 166-175, January.
    2. Sören Lindner & Julien Legault & Dabo Guan, 2012. "Disaggregating Input--Output Models With Incomplete Information," Economic Systems Research, Taylor & Francis Journals, vol. 24(4), pages 329-347, April.
    3. Richard Wood & Konstantin Stadler & Tatyana Bulavskaya & Stephan Lutter & Stefan Giljum & Arjan De Koning & Jeroen Kuenen & Helmut Schütz & José Acosta-Fernández & Arkaitz Usubiaga & Moana Simas & Olg, 2014. "Global Sustainability Accounting—Developing EXIOBASE for Multi-Regional Footprint Analysis," Sustainability, MDPI, vol. 7(1), pages 1-26, December.
    4. Marcel P. Timmer & Erik Dietzenbacher & Bart Los & Robert Stehrer & Gaaitzen J. Vries, 2015. "An Illustrated User Guide to the World Input–Output Database: the Case of Global Automotive Production," Review of International Economics, Wiley Blackwell, vol. 23(3), pages 575-605, August.
    5. Liu, Zhu & Feng, Kuishuang & Hubacek, Klaus & Liang, Sai & Anadon, Laura Diaz & Zhang, Chao & Guan, Dabo, 2015. "Four system boundaries for carbon accounts," Ecological Modelling, Elsevier, vol. 318(C), pages 118-125.
    6. Peters, Glen P., 2008. "From production-based to consumption-based national emission inventories," Ecological Economics, Elsevier, vol. 65(1), pages 13-23, March.
    7. Jiahua Pan & Jonathan Phillips & Ying Chen, 2008. "China's balance of emissions embodied in trade: approaches to measurement and allocating international responsibility," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 24(2), pages 354-376, Summer.
    8. Douglas, Stratford & Nishioka, Shuichiro, 2012. "International differences in emissions intensity and emissions content of global trade," Journal of Development Economics, Elsevier, vol. 99(2), pages 415-427.
    9. Su, Bin & Ang, B.W., 2010. "Input-output analysis of CO2 emissions embodied in trade: The effects of spatial aggregation," Ecological Economics, Elsevier, vol. 70(1), pages 10-18, November.
    10. de Koning, Arjan & Bruckner, Martin & Lutter, Stephan & Wood, Richard & Stadler, Konstantin & Tukker, Arnold, 2015. "Effect of aggregation and disaggregation on embodied material use of products in input–output analysis," Ecological Economics, Elsevier, vol. 116(C), pages 289-299.
    11. Meng, Bo & Xue, Jinjun & Feng, Kuishuang & Guan, Dabo & Fu, Xue, 2013. "China’s inter-regional spillover of carbon emissions and domestic supply chains," Energy Policy, Elsevier, vol. 61(C), pages 1305-1321.
    12. Brian Wixted & Norihiko Yamano & Colin Webb, 2006. "Input-Output Analysis in an Increasingly Globalised World: Applications of OECD's Harmonised International Tables," OECD Science, Technology and Industry Working Papers 2006/7, OECD Publishing.
    13. Nan Xiang & Feng Xu & Jinghua Sha, 2013. "Simulation Analysis of China’s Energy and Industrial Structure Adjustment Potential to Achieve a Low-carbon Economy by 2020," Sustainability, MDPI, vol. 5(12), pages 1-19, November.
    14. Chen, G.Q. & Zhang, Bo, 2010. "Greenhouse gas emissions in China 2007: Inventory and input-output analysis," Energy Policy, Elsevier, vol. 38(10), pages 6180-6193, October.
    15. Xin Tian & Miao Chang & Hiroki Tanikawa & Feng Shi & Hidefumi Imura, 2012. "Regional Disparity in Carbon Dioxide Emissions," Journal of Industrial Ecology, Yale University, vol. 16(4), pages 612-622, August.
    16. Wiedmann, Thomas & Lenzen, Manfred & Turner, Karen & Barrett, John, 2007. "Examining the global environmental impact of regional consumption activities -- Part 2: Review of input-output models for the assessment of environmental impacts embodied in trade," Ecological Economics, Elsevier, vol. 61(1), pages 15-26, February.
    17. Manfred Lenzen & Daniel Moran & Keiichiro Kanemoto & Arne Geschke, 2013. "Building Eora: A Global Multi-Region Input-Output Database At High Country And Sector Resolution," Economic Systems Research, Taylor & Francis Journals, vol. 25(1), pages 20-49, March.
    18. Zhang, Yanxia & Wang, Haikun & Liang, Sai & Xu, Ming & Liu, Weidong & Li, Shalang & Zhang, Rongrong & Nielsen, Chris P. & Bi, Jun, 2014. "Temporal and spatial variations in consumption-based carbon dioxide emissions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 60-68.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongke Yuan & Yixing Wang & Yuanying Chi & Feng Jin, 2020. "Identification of Key Carbon Emission Sectors and Analysis of Emission Effects in China," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    2. Fan He & Yang Yang & Xin Liu & Dong Wang & Junping Ji & Zhibin Yi, 2021. "Input–Output Analysis of China’s CO 2 Emissions in 2017 Based on Data of 149 Sectors," Sustainability, MDPI, vol. 13(8), pages 1-27, April.
    3. Zhang, Bo & Qu, Xue & Meng, Jing & Sun, Xudong, 2017. "Identifying primary energy requirements in structural path analysis: A case study of China 2012," Applied Energy, Elsevier, vol. 191(C), pages 425-435.
    4. Chen, Weidong & Wu, Fangyong & Geng, Wenxin & Yu, Guanyi, 2017. "Carbon emissions in China’s industrial sectors," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 264-273.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhonghua & Zhao, Yuhuan & Su, Bin & Zhang, Yongfeng & Wang, Song & Liu, Ya & Li, Hao, 2017. "Embodied carbon in China’s foreign trade: An online SCI-E and SSCI based literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 492-510.
    2. Eivind Lekve Bjelle & Johannes Többen & Konstantin Stadler & Thomas Kastner & Michaela C. Theurl & Karl-Heinz Erb & Kjartan-Steen Olsen & Kirsten S. Wiebe & Richard Wood, 2020. "Adding country resolution to EXIOBASE: impacts on land use embodied in trade," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-25, December.
    3. Ding, Tao & Ning, Yadong & Zhang, Yan, 2018. "The contribution of China’s bilateral trade to global carbon emissions in the context of globalization," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 78-88.
    4. Piñero, Pablo & Heikkinen, Mari & Mäenpää, Ilmo & Pongrácz, Eva, 2015. "Sector aggregation bias in environmentally extended input output modeling of raw material flows in Finland," Ecological Economics, Elsevier, vol. 119(C), pages 217-229.
    5. Zhang, Zengkai & Guo, Ju'e & Hewings, Geoffrey J.D., 2014. "The effects of direct trade within China on regional and national CO2 emissions," Energy Economics, Elsevier, vol. 46(C), pages 161-175.
    6. Su, Bin & Ang, B.W., 2013. "Input–output analysis of CO2 emissions embodied in trade: Competitive versus non-competitive imports," Energy Policy, Elsevier, vol. 56(C), pages 83-87.
    7. Boya Zhang & Shukuan Bai & Yadong Ning & Tao Ding & Yan Zhang, 2020. "Emission Embodied in International Trade and Its Responsibility from the Perspective of Global Value Chain: Progress, Trends, and Challenges," Sustainability, MDPI, vol. 12(8), pages 1-26, April.
    8. Hongguang Liu & Xiaomei Fan, 2017. "Value-Added-Based Accounting of CO 2 Emissions: A Multi-Regional Input-Output Approach," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    9. Ninpanit, Panittra & Malik, Arunima & Wakiyama, Takako & Geschke, Arne & Lenzen, Manfred, 2019. "Thailand’s energy-related carbon dioxide emissions from production-based and consumption-based perspectives," Energy Policy, Elsevier, vol. 133(C).
    10. Pothen, Frank, 2017. "A structural decomposition of global Raw Material Consumption," Ecological Economics, Elsevier, vol. 141(C), pages 154-165.
    11. Liu, Hongguang & Liu, Weidong & Fan, Xiaomei & Zou, Wei, 2015. "Carbon emissions embodied in demand–supply chains in China," Energy Economics, Elsevier, vol. 50(C), pages 294-305.
    12. Su, Bin & Ang, B.W. & Low, Melissa, 2013. "Input–output analysis of CO2 emissions embodied in trade and the driving forces: Processing and normal exports," Ecological Economics, Elsevier, vol. 88(C), pages 119-125.
    13. Yuhuan Zhao & Song Wang & Jiaqin Yang & Zhonghua Zhang & Ya Liu, 2016. "Input-output analysis of carbon emissions embodied in China-Japan trade," Applied Economics, Taylor & Francis Journals, vol. 48(16), pages 1515-1529, April.
    14. Liu, Qiaoling & Wang, Qi, 2015. "Reexamine SO2 emissions embodied in China's exports using multiregional input–output analysis," Ecological Economics, Elsevier, vol. 113(C), pages 39-50.
    15. Zhang, Youguo & Tang, Zhipeng, 2015. "Driving factors of carbon embodied in China's provincial exports," Energy Economics, Elsevier, vol. 51(C), pages 445-454.
    16. Qi, Tianyu & Winchester, Niven & Karplus, Valerie J. & Zhang, Xiliang, 2014. "Will economic restructuring in China reduce trade-embodied CO2 emissions?," Energy Economics, Elsevier, vol. 42(C), pages 204-212.
    17. Su, Bin & Thomson, Elspeth, 2016. "China's carbon emissions embodied in (normal and processing) exports and their driving forces, 2006–2012," Energy Economics, Elsevier, vol. 59(C), pages 414-422.
    18. Peng, Shuijun & Zhang, Wencheng & Sun, Chuanwang, 2016. "‘Environmental load displacement’ from the North to the South: A consumption-based perspective with a focus on China," Ecological Economics, Elsevier, vol. 128(C), pages 147-158.
    19. Duan, Yuwan & Jiang, Xuemei, 2017. "Temporal Change of China's Pollution Terms of Trade and its Determinants," Ecological Economics, Elsevier, vol. 132(C), pages 31-44.
    20. Yu, Liu & Meng, Bo & Hubacek, Klaus & Xue, Jinjun & Feng, Kuishuang & Gao, Yuning, 2016. "How does firm heterogeneity information impact the estimation of embodied carbon emissions in Chinese exports?," IDE Discussion Papers 592, Institute of Developing Economies, Japan External Trade Organization(JETRO).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:7:p:8223-8239:d:51671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.