IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i4p3919-3932d47675.html
   My bibliography  Save this article

Structural Evolution of Household Energy Consumption: A China Study

Author

Listed:
  • Qingsong Wang

    (School of Energy and Power Engineering, Shandong University, 17923 Jingshi Road, Jinan 250061, China
    These authors contributed equally to this work.)

  • Ping Liu

    (School of Management, Shandong University, 27 Shanda Road, Jinan 250100, China)

  • Xueliang Yuan

    (School of Energy and Power Engineering, Shandong University, 17923 Jingshi Road, Jinan 250061, China
    These authors contributed equally to this work.)

  • Xingxing Cheng

    (School of Energy and Power Engineering, Shandong University, 17923 Jingshi Road, Jinan 250061, China)

  • Rujian Ma

    (School of Energy and Power Engineering, Shandong University, 17923 Jingshi Road, Jinan 250061, China)

  • Ruimin Mu

    (School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China)

  • Jian Zuo

    (School of Natural and Built Environments, University of South Australia, Adelaide 5000, Australia)

Abstract

Sustainable energy production and consumption is one of the issues for the sustainable development strategy in China. As China’s economic development paradigm shifts, household energy consumption (HEC) has become a focus of achieving national goals of energy efficiency and greenhouse gas reduction. The information entropy model and LMDI model were employed in this study in order to analyse the structural evolution of HEC, as well as its associated critical factors. The results indicate that the information entropy of HEC increased gradually, and coal will be reduced by clean energies, such as natural gas and liquefied petroleum gas. The information entropy tends to stabilize and converge due to rapid urbanization. Therefore, from the perspective of environmental protection and natural resource conservation, the structure of household energy consumption will be optimized. This study revealed that residents’ income level is one of the most critical factors for the increase of energy consumption, while the energy intensity is the only driving force for the reduction of HEC. The accumulated contribution of these two factors to the HEC is 240.53% and −161.75%, respectively. It is imperative to improve the energy efficiency in the residential sector. Recommendations are provided to improve the energy efficiency-related technologies, as well as the standards for the sustainable energy strategy.

Suggested Citation

  • Qingsong Wang & Ping Liu & Xueliang Yuan & Xingxing Cheng & Rujian Ma & Ruimin Mu & Jian Zuo, 2015. "Structural Evolution of Household Energy Consumption: A China Study," Sustainability, MDPI, vol. 7(4), pages 1-14, April.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:4:p:3919-3932:d:47675
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/4/3919/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/4/3919/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mehrara, Mohsen, 2007. "Energy consumption and economic growth: The case of oil exporting countries," Energy Policy, Elsevier, vol. 35(5), pages 2939-2945, May.
    2. Edgar G. Hertwich, 2005. "Consumption and Industrial Ecology," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 1-6, January.
    3. Zhao, Xiaoli & Li, Na & Ma, Chunbo, 2012. "Residential energy consumption in urban China: A decomposition analysis," Energy Policy, Elsevier, vol. 41(C), pages 644-653.
    4. Jesper Munksgaard & Mette Wier & Manfred Lenzen & Christopher Dey, 2005. "Using Input‐Output Analysis to Measure the Environmental Pressure of Consumption at Different Spatial Levels," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 169-185, January.
    5. Galvin, Ray, 2014. "Estimating broad-brush rebound effects for household energy consumption in the EU 28 countries and Norway: some policy implications of Odyssee data," Energy Policy, Elsevier, vol. 73(C), pages 323-332.
    6. Hansla, Andre & Gamble, Amelie & Juliusson, Asgeir & Garling, Tommy, 2008. "Psychological determinants of attitude towards and willingness to pay for green electricity," Energy Policy, Elsevier, vol. 36(2), pages 768-774, February.
    7. Egmond, C. & Jonkers, R. & Kok, G., 2005. "A strategy to encourage housing associations to invest in energy conservation," Energy Policy, Elsevier, vol. 33(18), pages 2374-2384, December.
    8. Grubb, Michael, 1992. "Reply to Brookes," Energy Policy, Elsevier, vol. 20(5), pages 392-393, May.
    9. Ala-Mantila, Sanna & Heinonen, Jukka & Junnila, Seppo, 2014. "Relationship between urbanization, direct and indirect greenhouse gas emissions, and expenditures: A multivariate analysis," Ecological Economics, Elsevier, vol. 104(C), pages 129-139.
    10. Haas, Reinhard & Schipper, Lee, 1998. "Residential energy demand in OECD-countries and the role of irreversible efficiency improvements," Energy Economics, Elsevier, vol. 20(4), pages 421-442, September.
    11. Chung, William & Kam, M.S. & Ip, C.Y., 2011. "A study of residential energy use in Hong Kong by decomposition analysis, 1990–2007," Applied Energy, Elsevier, vol. 88(12), pages 5180-5187.
    12. Brookes, L. G., 1978. "Energy policy, the energy price fallacy and the role of nuclear energy in the UK," Energy Policy, Elsevier, vol. 6(2), pages 94-106, June.
    13. Harry D. Saunders, 2015. "Recent Evidence for Large Rebound: Elucidating the Drivers and their Implications for Climate Change Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    14. Yao, Xi-Long & Liu, Yang & Yan, Xiao, 2014. "A quantile approach to assess the effectiveness of the subsidy policy for energy-efficient home appliances: Evidence from Rizhao, China," Energy Policy, Elsevier, vol. 73(C), pages 512-518.
    15. Lenzen, Manfred & Dey, Christopher & Foran, Barney, 2004. "Energy requirements of Sydney households," Ecological Economics, Elsevier, vol. 49(3), pages 375-399, July.
    16. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    17. Linden, Anna-Lisa & Carlsson-Kanyama, Annika & Eriksson, Bjorn, 2006. "Efficient and inefficient aspects of residential energy behaviour: What are the policy instruments for change?," Energy Policy, Elsevier, vol. 34(14), pages 1918-1927, September.
    18. Cellura, Maurizio & Longo, Sonia & Mistretta, Marina, 2012. "Application of the Structural Decomposition Analysis to assess the indirect energy consumption and air emission changes related to Italian households consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1135-1145.
    19. Yohanis, Yigzaw Goshu, 2012. "Domestic energy use and householders' energy behaviour," Energy Policy, Elsevier, vol. 41(C), pages 654-665.
    20. Ang, B.W & Zhang, F.Q & Choi, Ki-Hong, 1998. "Factorizing changes in energy and environmental indicators through decomposition," Energy, Elsevier, vol. 23(6), pages 489-495.
    21. Changjian Wang & Fei Wang & Hongou Zhang & Yuyao Ye & Qitao Wu & Yongxian Su, 2014. "Carbon Emissions Decomposition and Environmental Mitigation Policy Recommendations for Sustainable Development in Shandong Province," Sustainability, MDPI, vol. 6(11), pages 1-16, November.
    22. Qingsong Wang & Xueliang Yuan & Jian Zuo & Ruimin Mu & Lixin Zhou & Mingxia Sun, 2014. "Dynamics of Sewage Charge Policies, Environmental Protection Industry and Polluting Enterprises—A Case Study in China," Sustainability, MDPI, vol. 6(8), pages 1-19, July.
    23. J. Daniel Khazzoom, 1980. "Economic Implications of Mandated Efficiency in Standards for Household Appliances," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 21-40.
    24. Biesiot, Wouter & Noorman, Klaas Jan, 1999. "Energy requirements of household consumption: a case study of The Netherlands," Ecological Economics, Elsevier, vol. 28(3), pages 367-383, March.
    25. Chitnis, Mona & Sorrell, Steve & Druckman, Angela & Firth, Steven K. & Jackson, Tim, 2013. "Turning lights into flights: Estimating direct and indirect rebound effects for UK households," Energy Policy, Elsevier, vol. 55(C), pages 234-250.
    26. Brookes, L. G., 1993. "Energy efficiency fallacies: the debate concluded," Energy Policy, Elsevier, vol. 21(4), pages 346-347, April.
    27. Yuan, Xueliang & Zuo, Jian, 2011. "Transition to low carbon energy policies in China--from the Five-Year Plan perspective," Energy Policy, Elsevier, vol. 39(6), pages 3855-3859, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qingsong Wang & Xueliang Yuan & Jian Zhang & Yun Gao & Jinglan Hong & Jian Zuo & Wei Liu, 2015. "Assessment of the Sustainable Development Capacity with the Entropy Weight Coefficient Method," Sustainability, MDPI, vol. 7(10), pages 1-22, October.
    2. Qingsong Wang & Zhenlei Gao & Hongrui Tang & Xueliang Yuan & Jian Zuo, 2018. "Exploring the Direct Rebound Effect of Energy Consumption: A Case Study," Sustainability, MDPI, vol. 10(1), pages 1-21, January.
    3. Fei Wang & Changjian Wang & Yongxian Su & Lixia Jin & Yang Wang & Xinlin Zhang, 2017. "Decomposition Analysis of Carbon Emission Factors from Energy Consumption in Guangdong Province from 1990 to 2014," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    4. Qingsong Wang & Hongrui Tang & Xueliang Yuan & Mansen Wang & Hongkun Xiao & Zhi Ma, 2018. "An Early Warning System for Oil Security in China," Sustainability, MDPI, vol. 10(1), pages 1-17, January.
    5. Zhang, Junyi & Teng, Fei & Zhou, Shaojie, 2020. "The structural changes and determinants of household energy choices and energy consumption in urban China: Addressing the role of building type," Energy Policy, Elsevier, vol. 139(C).
    6. Huang, Yun-Hsun, 2020. "Examining impact factors of residential electricity consumption in Taiwan using index decomposition analysis based on end-use level data," Energy, Elsevier, vol. 213(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Figge, Frank & Thorpe, Andrea Stevenson, 2019. "The symbiotic rebound effect in the circular economy," Ecological Economics, Elsevier, vol. 163(C), pages 61-69.
    2. Wang, Zhaohua & Han, Bai & Lu, Milin, 2016. "Measurement of energy rebound effect in households: Evidence from residential electricity consumption in Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 852-861.
    3. Das, Aparna & Paul, Saikat Kumar, 2014. "CO2 emissions from household consumption in India between 1993–94 and 2006–07: A decomposition analysis," Energy Economics, Elsevier, vol. 41(C), pages 90-105.
    4. Sorrell, Steve, 2009. "Jevons' Paradox revisited: The evidence for backfire from improved energy efficiency," Energy Policy, Elsevier, vol. 37(4), pages 1456-1469, April.
    5. Duarte, Rosa & Mainar, Alfredo & Sánchez-Chóliz, Julio, 2013. "The role of consumption patterns, demand and technological factors on the recent evolution of CO2 emissions in a group of advanced economies," Ecological Economics, Elsevier, vol. 96(C), pages 1-13.
    6. Blum, Bianca & Hübner, Julian & Müller, Sarah & Neumärker, Karl Justus Bernhard, 2018. "Challenges for sustainable environmental policy: Influencing factors of the rebound effect in energy efficiency improvements," The Constitutional Economics Network Working Papers 02-2018, University of Freiburg, Department of Economic Policy and Constitutional Economic Theory.
    7. Copiello, Sergio, 2017. "Building energy efficiency: A research branch made of paradoxes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1064-1076.
    8. David Font Vivanco & René Kemp & Ester Voet & Reinout Heijungs, 2014. "Using LCA-based Decomposition Analysis to Study the Multidimensional Contribution of Technological Innovation to Environmental Pressures," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 380-392, May.
    9. Wiedenhofer, Dominik & Lenzen, Manfred & Steinberger, Julia K., 2013. "Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications," Energy Policy, Elsevier, vol. 63(C), pages 696-707.
    10. Wang, Wenwen & Liu, Xiao & Zhang, Ming & Song, Xuefeng, 2014. "Using a new generalized LMDI (logarithmic mean Divisia index) method to analyze China's energy consumption," Energy, Elsevier, vol. 67(C), pages 617-622.
    11. Schipper, Lee & Grubb, Michael, 2000. "On the rebound? Feedback between energy intensities and energy uses in IEA countries," Energy Policy, Elsevier, vol. 28(6-7), pages 367-388, June.
    12. Ouyang, Jinlong & Long, Enshen & Hokao, Kazunori, 2010. "Rebound effect in Chinese household energy efficiency and solution for mitigating it," Energy, Elsevier, vol. 35(12), pages 5269-5276.
    13. Jialing Zou & Weidong Liu & Zhipeng Tang, 2017. "Analysis of Factors Contributing to Changes in Energy Consumption in Tangshan City between 2007 and 2012," Sustainability, MDPI, vol. 9(3), pages 1-14, March.
    14. Ma, Chunbo, 2014. "A multi-fuel, multi-sector and multi-region approach to index decomposition: An application to China's energy consumption 1995–2010," Energy Economics, Elsevier, vol. 42(C), pages 9-16.
    15. Huang, Yun-Hsun, 2020. "Examining impact factors of residential electricity consumption in Taiwan using index decomposition analysis based on end-use level data," Energy, Elsevier, vol. 213(C).
    16. Galvin, Ray, 2014. "Estimating broad-brush rebound effects for household energy consumption in the EU 28 countries and Norway: some policy implications of Odyssee data," Energy Policy, Elsevier, vol. 73(C), pages 323-332.
    17. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    18. Haitao Zheng & Qi Fang & Cheng Wang & Huiwen Wang & Ruoen Ren, 2017. "China’s Carbon Footprint Based on Input-Output Table Series: 1992–2020," Sustainability, MDPI, vol. 9(3), pages 1-17, March.
    19. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
    20. Yeongjun Yeo & Dongnyok Shim & Jeong-Dong Lee & Jörn Altmann, 2015. "Driving Forces of CO 2 Emissions in Emerging Countries: LMDI Decomposition Analysis on China and India’s Residential Sector," Sustainability, MDPI, vol. 7(12), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:4:p:3919-3932:d:47675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.