IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i10p13454-13468d56623.html
   My bibliography  Save this article

Blue Light Hazard and Risk Group Classification of 8 W LED Tubes, Replacing Fluorescent Tubes, through Optical Radiation Measurements

Author

Listed:
  • Francesco Leccese

    (LIghting and Acoustic Laboratory (LIA), Department of Energy engineering, Systems, Territory and Construction (DESTeC), University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy)

  • Viola Vandelanotte

    (Department of Energy Engineering, Faculty of Engineering Technology, KU Leuven, Technology Campus-Ghent, 9000 Ghent, Belgium)

  • Giacomo Salvadori

    (LIghting and Acoustic Laboratory (LIA), Department of Energy engineering, Systems, Territory and Construction (DESTeC), University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy)

  • Michele Rocca

    (LIghting and Acoustic Laboratory (LIA), Department of Energy engineering, Systems, Territory and Construction (DESTeC), University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy)

Abstract

In this paper, the authors discuss the results of a measurement survey of artificial optical radiation emitted by 8 W LED tubes suitable for the substitution of 18 W fluorescent lamps used for general lighting. For both types of lamps, three different color temperatures were chosen, 3000 K, 4000 K, and 6000 K. These measurements were performed to evaluate the photobiological safety of the sources. The radiance and irradiance values have been measured in a wide range of wavelengths (180–3000 nm). The measurement results obtained for the LED tubes have been compared to those of similar measurements obtained for fluorescent lamps. The analysis has been focused on the range of wavelengths 300–700 nm, the blue light range, which turned out to be defining for the risk groups of the lamps. This classification is a function of the maximum permissible exposure time as indicated in the European Standard EN 62471 on the photobiological safety of lamps and lamp systems.

Suggested Citation

  • Francesco Leccese & Viola Vandelanotte & Giacomo Salvadori & Michele Rocca, 2015. "Blue Light Hazard and Risk Group Classification of 8 W LED Tubes, Replacing Fluorescent Tubes, through Optical Radiation Measurements," Sustainability, MDPI, vol. 7(10), pages 1-15, September.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:10:p:13454-13468:d:56623
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/10/13454/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/10/13454/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khan, N. & Abas, N., 2011. "Comparative study of energy saving light sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 296-309, January.
    2. Francesco Leccese & Giacomo Salvadori & Matteo Casini & Marco Bertozzi, 2014. "Analysis and Measurements of Artificial Optical Radiation (AOR) Emitted by Lighting Sources Found in Offices," Sustainability, MDPI, vol. 6(9), pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giacomo Salvadori & Fabio Fantozzi & Michele Rocca & Francesco Leccese, 2016. "The Energy Audit Activity Focused on the Lighting Systems in Historical Buildings," Energies, MDPI, vol. 9(12), pages 1-13, November.
    2. Nona Schulte-Römer & Josiane Meier & Max Söding & Etta Dannemann, 2019. "The LED Paradox: How Light Pollution Challenges Experts to Reconsider Sustainable Lighting," Sustainability, MDPI, vol. 11(21), pages 1-17, November.
    3. Wojciech Wawrzyński & Mariusz Zieja & Justyna Tomaszewska & Mariusz Michalski & Grzegorz Kamiński & Dawid Wabik, 2022. "The Potential Impact of Laser Pointers on Aviation Safety," Energies, MDPI, vol. 15(17), pages 1-18, August.
    4. Fabio Fantozzi & Francesco Leccese & Giacomo Salvadori & Michele Rocca & Marco Garofalo, 2016. "LED Lighting for Indoor Sports Facilities: Can Its Use Be Considered as Sustainable Solution from a Techno-Economic Standpoint?," Sustainability, MDPI, vol. 8(7), pages 1-13, June.
    5. Farzana Parveen Tajudeen & Noor Ismawati Jaafar & Ainin Sulaiman & Sedigheh Moghavvemi, 2020. "Light Emitting Diode (LED) Usage in Organizations: Impact on Environmental and Economic Performance," Sustainability, MDPI, vol. 12(20), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabio Fantozzi & Francesco Leccese & Giacomo Salvadori & Michele Rocca & Marco Garofalo, 2016. "LED Lighting for Indoor Sports Facilities: Can Its Use Be Considered as Sustainable Solution from a Techno-Economic Standpoint?," Sustainability, MDPI, vol. 8(7), pages 1-13, June.
    2. Azcarate, I. & Gutierrez, J.J. & Lazkano, A. & Saiz, P. & Redondo, K. & Leturiondo, L.A., 2016. "Towards limiting the sensitivity of energy-efficient lighting to voltage fluctuations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1384-1395.
    3. Memon, Mudasir Ahmed & Mekhilef, Saad & Mubin, Marizan & Aamir, Muhammad, 2018. "Selective harmonic elimination in inverters using bio-inspired intelligent algorithms for renewable energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2235-2253.
    4. Igual, R. & Medrano, C., 2020. "Research challenges in real-time classification of power quality disturbances applicable to microgrids: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    5. McMeekin, Andrew & Geels, Frank W. & Hodson, Mike, 2019. "Mapping the winds of whole system reconfiguration: Analysing low-carbon transformations across production, distribution and consumption in the UK electricity system (1990–2016)," Research Policy, Elsevier, vol. 48(5), pages 1216-1231.
    6. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    7. Tanesab, Julius & Parlevliet, David & Whale, Jonathan & Urmee, Tania, 2018. "Energy and economic losses caused by dust on residential photovoltaic (PV) systems deployed in different climate areas," Renewable Energy, Elsevier, vol. 120(C), pages 401-412.
    8. Abas, Naeem & Kalair, Ali Raza & Khan, Nasrullah & Haider, Aun & Saleem, Zahid & Saleem, Muhammad Shoaib, 2018. "Natural and synthetic refrigerants, global warming: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 557-569.
    9. Aiman Albatayneh & Adel Juaidi & Ramez Abdallah & Francisco Manzano-Agugliaro, 2021. "Influence of the Advancement in the LED Lighting Technologies on the Optimum Windows-to-Wall Ratio of Jordanians Residential Buildings," Energies, MDPI, vol. 14(17), pages 1-20, September.
    10. Khorasanizadeh, Hasti & Parkkinen, Jussi & Parthiban, Rajendran & David Moore, Joel, 2015. "Energy and economic benefits of LED adoption in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 629-637.
    11. Ahn, Byung-Lip & Jang, Cheol-Yong & Leigh, Seung-Bok & Yoo, Seunghwan & Jeong, Hakgeun, 2014. "Effect of LED lighting on the cooling and heating loads in office buildings," Applied Energy, Elsevier, vol. 113(C), pages 1484-1489.
    12. Jaewook Lee & Mohamed Boubekri & Feng Liang, 2019. "Impact of Building Design Parameters on Daylighting Metrics Using an Analysis, Prediction, and Optimization Approach Based on Statistical Learning Technique," Sustainability, MDPI, vol. 11(5), pages 1-21, March.
    13. Kalair, A. & Abas, N. & Kalair, A.R. & Saleem, Z. & Khan, N., 2017. "Review of harmonic analysis, modeling and mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1152-1187.
    14. Muslima Zahan, 2021. "Sustainable Strategy to Sustainable Business: An Empirical Analysis on Energy-Efficient Light Bulb," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    15. Trianni, Andrea & Cagno, Enrico & De Donatis, Alessio, 2014. "A framework to characterize energy efficiency measures," Applied Energy, Elsevier, vol. 118(C), pages 207-220.
    16. Fabio Nardecchia & Monica Barbalace & Fabio Bisegna & Chiara Burattini & Franco Gugliermetti & Andrea De Lieto Vollaro & Ferdinando Salata & Iacopo Golasi, 2015. "A Method to Evaluate the Stimulation of a Real World Field of View by Means of a Spectroradiometric Analysis," Sustainability, MDPI, vol. 7(11), pages 1-18, November.
    17. Beccali, Marco & Ciulla, Giuseppina & Lo Brano, Valerio & Galatioto, Alessandra & Bonomolo, Marina, 2017. "Artificial neural network decision support tool for assessment of the energy performance and the refurbishment actions for the non-residential building stock in Southern Italy," Energy, Elsevier, vol. 137(C), pages 1201-1218.
    18. Timma, Lelde & Bazbauers, Gatis & Bariss, Uldis & Blumberga, Andra & Blumberga, Dagnija, 2017. "Energy efficiency policy analysis using socio-technical approach and system dynamics. Case study of lighting in Latvia's households," Energy Policy, Elsevier, vol. 109(C), pages 545-554.
    19. Miroslaw Wlas & Stanislaw Galla, 2018. "The Influence of LED Lighting Sources on the Nature of Power Factor," Energies, MDPI, vol. 11(6), pages 1-12, June.
    20. Li, Clyde Zhengdao & Lai, Xulu & Xiao, Bing & Tam, Vivian W.Y. & Guo, Shan & Zhao, Yiyu, 2020. "A holistic review on life cycle energy of buildings: An analysis from 2009 to 2019," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:10:p:13454-13468:d:56623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.