IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v4y2012i11p3088-3123d21440.html
   My bibliography  Save this article

Sustainable, Full-Scope Nuclear Fission Energy at Planetary Scale

Author

Listed:
  • Robert Petroski

    (Nuclear Innovation Engineer, TerraPower LLC, 330 120th Avenue NE, Suite 100, Bellevue, WA 98005, USA)

  • Lowell Wood

    (Hoover Institution, Stanford University, Stanford, CA 94305, USA)

Abstract

A nuclear fission-based energy system is described that is capable of supplying the energy needs of all of human civilization for a full range of human energy use scenarios, including both very high rates of energy use and strikingly-large amounts of total energy-utilized. To achieve such “planetary scale sustainability”, this nuclear energy system integrates three nascent technologies: uranium extraction from seawater, manifestly safe breeder reactors, and deep borehole disposal of nuclear waste. In addition to these technological components, it also possesses the sociopolitical quality of manifest safety, which involves engineering to a very high degree of safety in a straightforward manner, while concurrently making the safety characteristics of the resulting nuclear systems continually manifest to society as a whole. Near-term aspects of this nuclear system are outlined, and representative parameters given for a system of global scale capable of supplying energy to a planetary population of 10 billion people at a per capita level enjoyed by contemporary Americans, i.e ., of a type which might be seen a half-century hence. In addition to being sustainable from a resource standpoint, the described nuclear system is also sustainable with respect to environmental and human health impacts, including those resulting from severe accidents.

Suggested Citation

  • Robert Petroski & Lowell Wood, 2012. "Sustainable, Full-Scope Nuclear Fission Energy at Planetary Scale," Sustainability, MDPI, vol. 4(11), pages 1-36, November.
  • Handle: RePEc:gam:jsusta:v:4:y:2012:i:11:p:3088-3123:d:21440
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/4/11/3088/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/4/11/3088/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vaclav Smil, 2010. "Energy Myths and Realities: Bringing Science to the Energy Policy Debate," Books, American Enterprise Institute, number 50339, September.
    2. Burgherr, Peter & Hirschberg, Stefan, 2008. "Severe accident risks in fossil energy chains: A comparative analysis," Energy, Elsevier, vol. 33(4), pages 538-553.
    3. Sovacool, Benjamin K., 2008. "Valuing the greenhouse gas emissions from nuclear power: A critical survey," Energy Policy, Elsevier, vol. 36(8), pages 2940-2953, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafael Esteban & Zaida Troya & Enrique Herrera-Viedma & Antonio Peña-García, 2021. "IFMIF-DONES as Paradigm of Institutional Funding in the Way towards Sustainable Energy," Sustainability, MDPI, vol. 13(23), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bi-Huei Tsai & Yao-Min Huang, 2023. "Comparing the Substitution of Nuclear Energy or Renewable Energy for Fossil Fuels between the United States and Africa," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    2. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.
    3. World Bank, 2012. "Air Transport and Energy Efficiency," World Bank Publications - Reports 16805, The World Bank Group.
    4. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    5. Kalghatgi, Gautam, 2018. "Is it really the end of internal combustion engines and petroleum in transport?," Applied Energy, Elsevier, vol. 225(C), pages 965-974.
    6. Krishnan, Sooridarsan & Ghani, Noraini Abd & Aminuddin, Noor Fathanah & Quraishi, Khurrum Shehzad & Azman, Ninna Sakina & Cravotto, Giancarlo & Leveque, Jean-Marc, 2020. "Microwave-assisted lipid extraction from Chlorella vulgaris in water with 0.5%–2.5% of imidazolium based ionic liquid as additive," Renewable Energy, Elsevier, vol. 149(C), pages 244-252.
    7. Shoeibi, Shahin & Rahbar, Nader & Esfahlani, Ahad Abedini & Kargarsharifabad, Hadi, 2021. "Energy matrices, exergoeconomic and enviroeconomic analysis of air-cooled and water-cooled solar still: Experimental investigation and numerical simulation," Renewable Energy, Elsevier, vol. 171(C), pages 227-244.
    8. Juliette N. Rooney-Varga & Florian Kapmeier & John D. Sterman & Andrew P. Jones & Michele Putko & Kenneth Rath, 2020. "The Climate Action Simulation," Simulation & Gaming, , vol. 51(2), pages 114-140, April.
    9. Robert K. Perrons & Adam B. Jaffe & Trinh Le, 2020. "Tracing the Linkages Between Scientific Research and Energy Innovations: A Comparison of Clean and Dirty Technologies," NBER Working Papers 27777, National Bureau of Economic Research, Inc.
    10. Sigit Perdana and Rod Tyers, 2020. "Global Climate Change Mitigation: Strategic Incentives," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 183-206.
    11. Ananthakrishnan, K. & Bijarniya, Jay Prakash & Sarkar, Jahar, 2021. "Energy, exergy, economic and ecological analyses of a diurnal radiative water cooler," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    12. Djanibekov, Utkur & Gaur, Varun, 2018. "Nexus of energy use, agricultural production, employment and incomes among rural households in Uttar Pradesh, India," Energy Policy, Elsevier, vol. 113(C), pages 439-453.
    13. Lambertini, Luca & Orsini, Raimondello & Palestini, Arsen, 2017. "On the instability of the R&D portfolio in a dynamic monopoly. Or, one cannot get two eggs in one basket," International Journal of Production Economics, Elsevier, vol. 193(C), pages 703-712.
    14. Gilbert, Alexander Q. & Sovacool, Benjamin K., 2018. "Carbon pathways in the global gas market: An attributional lifecycle assessment of the climate impacts of liquefied natural gas exports from the United States to Asia," Energy Policy, Elsevier, vol. 120(C), pages 635-643.
    15. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    16. Benjamin K. Sovacool, 2016. "The history and politics of energy transitions: Comparing contested views and finding common ground," WIDER Working Paper Series wp-2016-81, World Institute for Development Economic Research (UNU-WIDER).
    17. Moosavian, Seyed Farhan & Borzuei, Daryoosh & Ahmadi, Abolfazl, 2021. "Energy, exergy, environmental and economic analysis of the parabolic solar collector with life cycle assessment for different climate conditions," Renewable Energy, Elsevier, vol. 165(P1), pages 301-320.
    18. Faria, Ricardo & Marques, Pedro & Moura, Pedro & Freire, Fausto & Delgado, Joaquim & de Almeida, Aníbal T., 2013. "Impact of the electricity mix and use profile in the life-cycle assessment of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 271-287.
    19. Lars Sorge & Anne Neumann & Christian von Hirschhausen & Ben Wealer, 2019. "Nuclear Power, Democracy, Development, and Nuclear Warheads: Determinants for Introducing Nuclear Power," Discussion Papers of DIW Berlin 1811, DIW Berlin, German Institute for Economic Research.
    20. Barnham, Keith & Knorr, Kaspar & Mazzer, Massimo, 2013. "Benefits of photovoltaic power in supplying national electricity demand," Energy Policy, Elsevier, vol. 54(C), pages 385-390.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:4:y:2012:i:11:p:3088-3123:d:21440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.