IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i8p6708-d1124376.html
   My bibliography  Save this article

Synthesis, Stability and Microstructure of a One-Step Mixed Geopolymer Backfill Paste Derived from Diverse Waste Slags

Author

Listed:
  • Xianhui Zhao

    (School of Civil Engineering, Hebei University of Engineering, Handan 056038, China)

  • Haoyu Wang

    (School of Civil Engineering, Tianjin Renai College, Tianjin 301636, China)

  • Han Gao

    (School of Mechanical Engineering, Tianjin Renai College, Tianjin 301636, China)

  • Luhui Liang

    (School of Civil Engineering, Hebei University of Engineering, Handan 056038, China)

  • Jing Yang

    (School of Civil Engineering, Hebei University of Engineering, Handan 056038, China)

Abstract

The advent of industrialization has produced an enormous amount of industrial waste slag, which drastically pollutes environmental resources. This study examines the production, stability, and microstructure of a novel backfill geopolymer paste derived from multiple industrial waste slags, including silica-alumina precursors (low-calcium composition) and waste slags (high-calcium composition), as well as two additives. The characteristics of self-hardening were discovered. The effects of low-calcium fly ash, granulated blast furnace slag, red mud, and lime powder on fluidity and compressive strength were then evaluated. To assess the stability, the resistances to drying shrinkage, permeability, and chemical attack by an optimized geopolymer backfill paste were investigated. Furthermore, SEM-EDS, XRD, FTIR, and TG-DSC tests were employed to reveal the microstructures, products, and thermal stability. The results show that the backfill paste hardens well and has no impact on alkalinity dissolution for adjacent soils and water. The optimum sample, P1, had a water-binder ratio of 0.70, resulting in 201 mm fluidity and 2.1 MPa 28-d compressive strength. In terms of drying shrinkage, permeability, and Na 2 SO 4 and NaCl solution attack, sample P1 outperformed the conventional Ordinary Portland cement paste (OPC) for 90 days. The paste P1 containing about 46.0 wt% waste slags meets the fresh and hardened property requirements for goaf backfill, and the chemical binding of P1 is acquired from the mixture of (N,C)-A-S-H, C-S-H, and C-A-S-H gel products. These findings lay the groundwork for the scientific application of a wide range of waste slags in backfill engineering.

Suggested Citation

  • Xianhui Zhao & Haoyu Wang & Han Gao & Luhui Liang & Jing Yang, 2023. "Synthesis, Stability and Microstructure of a One-Step Mixed Geopolymer Backfill Paste Derived from Diverse Waste Slags," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6708-:d:1124376
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/8/6708/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/8/6708/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jaksada Thumrongvut & Sittichai Seangatith & Chayakrit Phetchuay & Cherdsak Suksiripattanapong, 2022. "Comparative Experimental Study of Sustainable Reinforced Portland Cement Concrete and Geopolymer Concrete Beams Using Rice Husk Ash," Sustainability, MDPI, vol. 14(16), pages 1-20, August.
    2. Cai, Bofeng & Wang, Jinnan & He, Jie & Geng, Yong, 2016. "Evaluating CO2 emission performance in China’s cement industry: An enterprise perspective," Applied Energy, Elsevier, vol. 166(C), pages 191-200.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xuewei & Yuan, Zengwei & Xu, Yuan & Jiang, Songyan, 2017. "Greening cement in China: A cost-effective roadmap," Applied Energy, Elsevier, vol. 189(C), pages 233-244.
    2. Li, Wei & Gao, Shubin, 2018. "Prospective on energy related carbon emissions peak integrating optimized intelligent algorithm with dry process technique application for China's cement industry," Energy, Elsevier, vol. 165(PB), pages 33-54.
    3. Song, Yazhi & Liu, Tiansen & Liang, Dapeng & Li, Yin & Song, Xiaoqiu, 2019. "A Fuzzy Stochastic Model for Carbon Price Prediction Under the Effect of Demand-related Policy in China's Carbon Market," Ecological Economics, Elsevier, vol. 157(C), pages 253-265.
    4. Meng, Bo & Liu, Yu & Andrew, Robbie & Zhou, Meifang & Hubacek, Klaus & Xue, Jinjun & Peters, Glen & Gao, Yuning, 2018. "More than half of China’s CO2 emissions are from micro, small and medium-sized enterprises," Applied Energy, Elsevier, vol. 230(C), pages 712-725.
    5. Mingchun Cao & Ilan Alon, 2020. "Intellectual Structure of the Belt and Road Initiative Research: A Scientometric Analysis and Suggestions for a Future Research Agenda," Sustainability, MDPI, vol. 12(17), pages 1-40, August.
    6. Shan, Yuli & Liu, Jianghua & Liu, Zhu & Xu, Xinwanghao & Shao, Shuai & Wang, Peng & Guan, Dabo, 2016. "New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors," Applied Energy, Elsevier, vol. 184(C), pages 742-750.
    7. Yuan Yuan & Ping Xu & Hui Zhang, 2023. "Spatial Zoning of Carbon Dioxide Emissions at the Intra-City Level: A Case Study of Nanjing, China," IJERPH, MDPI, vol. 20(5), pages 1-19, February.
    8. Zhang, You & Yuan, Zengwei & Margni, Manuele & Bulle, Cécile & Hua, Hui & Jiang, Songyan & Liu, Xuewei, 2019. "Intensive carbon dioxide emission of coal chemical industry in China," Applied Energy, Elsevier, vol. 236(C), pages 540-550.
    9. Cui, Zheng & Shao, Wei & Chen, Zhaoyou & Cheng, Lin, 2017. "Mathematical model and numerical solutions for the coupled gas–solid heat transfer process in moving packed beds," Applied Energy, Elsevier, vol. 206(C), pages 1297-1308.
    10. Liu, Shangwei & Tian, Xin & Cai, Wenjia & Chen, Weiqiang & Wang, Yafei, 2018. "How the transitions in iron and steel and construction material industries impact China’s CO2 emissions: Comprehensive analysis from an inter-sector linked perspective," Applied Energy, Elsevier, vol. 211(C), pages 64-75.
    11. Cai, Bofeng & Guo, Huanxiu & Ma, Zipeng & Wang, Zhixuan & Dhakal, Shobhakar & Cao, Libin, 2019. "Benchmarking carbon emissions efficiency in Chinese cities: A comparative study based on high-resolution gridded data," Applied Energy, Elsevier, vol. 242(C), pages 994-1009.
    12. Nadiia Charkovska & Mariia Halushchak & Rostyslav Bun & Zbigniew Nahorski & Tomohiro Oda & Matthias Jonas & Petro Topylko, 2019. "A high-definition spatially explicit modelling approach for national greenhouse gas emissions from industrial processes: reducing the errors and uncertainties in global emission modelling," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(6), pages 907-939, August.
    13. Ran Wang & Hui Ci & Ting Zhang & Yuxin Tang & Jinyuan Wei & Hui Yang & Gefei Feng & Zhaojin Yan, 2023. "Spatial-Temporal Evolution Characteristics of Industrial Carbon Emissions in China’s Most Developed Provinces from 1998–2013: The Case of Guangdong," Energies, MDPI, vol. 16(5), pages 1-21, February.
    14. Sun, Chuanwang & Zeng, Yingfang, 2023. "Does the green credit policy affect the carbon emissions of heavily polluting enterprises?," Energy Policy, Elsevier, vol. 180(C).
    15. Liu, Xianbing & Fan, Yongbin & Wang, Can, 2017. "An estimation of the effect of carbon pricing for CO2 mitigation in China’s cement industry," Applied Energy, Elsevier, vol. 185(P1), pages 671-686.
    16. Wu, Xuecheng & Zhao, Liang & Zhang, Yongxin & Zhao, Lingjie & Zheng, Chenghang & Gao, Xiang & Cen, Kefa, 2016. "Cost and potential of energy conservation and collaborative pollutant reduction in the iron and steel industry in China," Applied Energy, Elsevier, vol. 184(C), pages 171-183.
    17. Zhao, Yabo & Liu, Xiaofeng & Wang, Shaojian & Ge, Yuejing, 2019. "Energy relations between China and the countries along the Belt and Road: An analysis of the distribution of energy resources and interdependence relationships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 133-144.
    18. Yue, Hui & Worrell, Ernst & Crijns-Graus, Wina, 2018. "Modeling the multiple benefits of electricity savings for emissions reduction on power grid level: A case study of China’s chemical industry," Applied Energy, Elsevier, vol. 230(C), pages 1603-1632.
    19. Shi, Kaifang & Yang, Qingyuan & Fang, Guangliang & Yu, Bailang & Chen, Zuoqi & Yang, Chengshu & Wu, Jianping, 2019. "Evaluating spatiotemporal patterns of urban electricity consumption within different spatial boundaries: A case study of Chongqing, China," Energy, Elsevier, vol. 167(C), pages 641-653.
    20. Tao Du & Jian Wang & Heming Wang & Xin Tian & Qiang Yue & Hiroki Tanikawa, 2020. "CO2 emissions from the Chinese cement sector: Analysis from both the supply and demand sides," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 923-934, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6708-:d:1124376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.