IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2249-d1081054.html
   My bibliography  Save this article

Spatial-Temporal Evolution Characteristics of Industrial Carbon Emissions in China’s Most Developed Provinces from 1998–2013: The Case of Guangdong

Author

Listed:
  • Ran Wang

    (School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China)

  • Hui Ci

    (School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China)

  • Ting Zhang

    (School of Public Policy and Management, China University of Mining and Technology, Xuzhou 221116, China)

  • Yuxin Tang

    (School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China)

  • Jinyuan Wei

    (School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China)

  • Hui Yang

    (School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China)

  • Gefei Feng

    (School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou 221009, China
    Key Laboratory of Language and Cognitive Neuroscience of Jiangsu Province, Collaborative Innovation Center for Language Ability, Xuzhou 221009, China)

  • Zhaojin Yan

    (School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

Industry is widely valued as an important contributor to carbon emissions. Therefore, it is of great significance to analyze the industrial carbon emissions (ICE) in Guangdong, the strongest industrial province in China. We have adopted the carbon emission accounting model and standard deviational ellipse analysis model to analyze the temporal and spatial characteristics and evolution trends of the industry carbon emission amount and intensity in Guangdong from 1998 to 2013. The study results include: (1) Due to the rapid development of industry, Guangdong’s ICE showed a steady growth trend; (2) The distribution characteristics of ICE were characterized by the trend of taking the Pearl River Delta (PRD) region as the center and gradually spreading to the surrounding areas. From the perspective of industrial sectors, it can be divided into steady growth type, fluctuant growth type, basically stable type, and decrease type; (3) The spatial pattern of the ICE in Guangdong is basically the same as that of the total industrial output value, that is, the southwest-northeast pattern. This work is helpful for China’s carbon peak, especially for the formulation of industrial carbon peak policy and the sustainable development of the environment.

Suggested Citation

  • Ran Wang & Hui Ci & Ting Zhang & Yuxin Tang & Jinyuan Wei & Hui Yang & Gefei Feng & Zhaojin Yan, 2023. "Spatial-Temporal Evolution Characteristics of Industrial Carbon Emissions in China’s Most Developed Provinces from 1998–2013: The Case of Guangdong," Energies, MDPI, vol. 16(5), pages 1-21, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2249-:d:1081054
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2249/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2249/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wen, Zongguo & Chen, Min & Meng, Fanxin, 2015. "Evaluation of energy saving potential in China's cement industry using the Asian-Pacific Integrated Model and the technology promotion policy analysis," Energy Policy, Elsevier, vol. 77(C), pages 227-237.
    2. Rahman, Mohammad Mafizur & Kashem, Mohammad Abul, 2017. "Carbon emissions, energy consumption and industrial growth in Bangladesh: Empirical evidence from ARDL cointegration and Granger causality analysis," Energy Policy, Elsevier, vol. 110(C), pages 600-608.
    3. Changjian Wang & Fei Wang & Hongou Zhang & Yuyao Ye & Qitao Wu & Yongxian Su, 2014. "Carbon Emissions Decomposition and Environmental Mitigation Policy Recommendations for Sustainable Development in Shandong Province," Sustainability, MDPI, vol. 6(11), pages 1-16, November.
    4. Zhicong Zhang & Hao Xie & Jubing Zhang & Xinye Wang & Jiayu Wei & Xibin Quan, 2022. "Prediction and Trend Analysis of Regional Industrial Carbon Emission in China: A Study of Nanjing City," IJERPH, MDPI, vol. 19(12), pages 1-23, June.
    5. Zhao, Xiaofan & Li, Huimin & Wu, Liang & Qi, Ye, 2014. "Implementation of energy-saving policies in China: How local governments assisted industrial enterprises in achieving energy-saving targets," Energy Policy, Elsevier, vol. 66(C), pages 170-184.
    6. Peng, Lihong & Zeng, Xiaoling & Wang, Yejun & Hong, Gui-Bing, 2015. "Analysis of energy efficiency and carbon dioxide reduction in the Chinese pulp and paper industry," Energy Policy, Elsevier, vol. 80(C), pages 65-75.
    7. Wang, Ping & Wu, Wanshui & Zhu, Bangzhu & Wei, Yiming, 2013. "Examining the impact factors of energy-related CO2 emissions using the STIRPAT model in Guangdong Province, China," Applied Energy, Elsevier, vol. 106(C), pages 65-71.
    8. Peng, Lihong & Zhang, Yiting & Wang, Yejun & Zeng, Xiaoling & Peng, Najun & Yu, Ang, 2015. "Energy efficiency and influencing factor analysis in the overall Chinese textile industry," Energy, Elsevier, vol. 93(P1), pages 1222-1229.
    9. Feng Wang & Changhai Gao & Wulin Zhang & Danwen Huang, 2021. "Industrial Structure Optimization and Low-Carbon Transformation of Chinese Industry Based on the Forcing Mechanism of CO 2 Emission Peak Target," Sustainability, MDPI, vol. 13(8), pages 1-26, April.
    10. Liton Chandra Voumik & Md. Azharul Islam & Samrat Ray & Nora Yusma Mohamed Yusop & Abdul Rahim Ridzuan, 2023. "CO 2 Emissions from Renewable and Non-Renewable Electricity Generation Sources in the G7 Countries: Static and Dynamic Panel Assessment," Energies, MDPI, vol. 16(3), pages 1-14, January.
    11. Yujiao Xian & Ke Wang & Xunpeng Shi & Chi Zhang & Yi-Ming Wei & Zhimin Huang, 2018. "Carbon emissions intensity reduction target for China¡¯s power industry: An efficiency and productivity perspective," CEEP-BIT Working Papers 117, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    12. Cai, Bofeng & Wang, Jinnan & He, Jie & Geng, Yong, 2016. "Evaluating CO2 emission performance in China’s cement industry: An enterprise perspective," Applied Energy, Elsevier, vol. 166(C), pages 191-200.
    13. Wen, Hong-xing & Chen, Zhe & Yang, Qian & Liu, Jin-yi & Nie, Pu-yan, 2022. "Driving forces and mitigating strategies of CO2 emissions in China: A decomposition analysis based on 38 industrial sub-sectors," Energy, Elsevier, vol. 245(C).
    14. Jingyao Peng & Yidi Sun & Junnian Song & Wei Yang, 2020. "Exploring Potential Pathways toward Energy-Related Carbon Emission Reduction in Heavy Industrial Regions of China: An Input–Output Approach," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    15. Wang, Xiaolei & Lin, Boqiang, 2016. "How to reduce CO2 emissions in China׳s iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1496-1505.
    16. Wang, Haikun & Zhang, Yanxia & Lu, Xi & Nielsen, Chris P. & Bi, Jun, 2015. "Understanding China׳s carbon dioxide emissions from both production and consumption perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 189-200.
    17. Fei Ye & Lixu Li & Zhiqiang Wang & Yina Li, 2018. "An Asymmetric Nash Bargaining Model for Carbon Emission Quota Allocation among Industries: Evidence from Guangdong Province, China," Sustainability, MDPI, vol. 10(11), pages 1-18, November.
    18. Marlies Vanhulsel & Carolien Beckx & Davy Janssens & Koen Vanhoof & Geert Wets, 2011. "Measuring dissimilarity of geographically dispersed space–time paths," Transportation, Springer, vol. 38(1), pages 65-79, January.
    19. Xinyu Zhang & Mufei Shen & Yupeng Luan & Weijia Cui & Xueqin Lin, 2022. "Spatial Evolutionary Characteristics and Influencing Factors of Urban Industrial Carbon Emission in China," IJERPH, MDPI, vol. 19(18), pages 1-21, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xuewei & Yuan, Zengwei & Xu, Yuan & Jiang, Songyan, 2017. "Greening cement in China: A cost-effective roadmap," Applied Energy, Elsevier, vol. 189(C), pages 233-244.
    2. Li, Wei & Gao, Shubin, 2018. "Prospective on energy related carbon emissions peak integrating optimized intelligent algorithm with dry process technique application for China's cement industry," Energy, Elsevier, vol. 165(PB), pages 33-54.
    3. Dong Jichang & He Jing & Li Xiuting & Mou Xindi & Dong Zhi, 2020. "The Effect of Industrial Structure Change on Carbon Dioxide Emissions: A Cross-Country Panel Analysis," Journal of Systems Science and Information, De Gruyter, vol. 8(1), pages 1-16, February.
    4. Jiancheng Qin & Hui Tao & Minjin Zhan & Qamar Munir & Karthikeyan Brindha & Guijin Mu, 2019. "Scenario Analysis of Carbon Emissions in the Energy Base, Xinjiang Autonomous Region, China," Sustainability, MDPI, vol. 11(15), pages 1-18, August.
    5. Meng, Bo & Liu, Yu & Andrew, Robbie & Zhou, Meifang & Hubacek, Klaus & Xue, Jinjun & Peters, Glen & Gao, Yuning, 2018. "More than half of China’s CO2 emissions are from micro, small and medium-sized enterprises," Applied Energy, Elsevier, vol. 230(C), pages 712-725.
    6. Cui, Yu & Khan, Sufyan Ullah & Sauer, Johannes & Kipperberg, Gorm & Zhao, Minjuan, 2023. "Agricultural carbon footprint, energy utilization and economic quality: What causes what, and where?," Energy, Elsevier, vol. 278(PA).
    7. Yuan Yuan & Ping Xu & Hui Zhang, 2023. "Spatial Zoning of Carbon Dioxide Emissions at the Intra-City Level: A Case Study of Nanjing, China," IJERPH, MDPI, vol. 20(5), pages 1-19, February.
    8. Zhang, You & Yuan, Zengwei & Margni, Manuele & Bulle, Cécile & Hua, Hui & Jiang, Songyan & Liu, Xuewei, 2019. "Intensive carbon dioxide emission of coal chemical industry in China," Applied Energy, Elsevier, vol. 236(C), pages 540-550.
    9. Wu, Rui & Geng, Yong & Cui, Xiaowei & Gao, Ziyan & Liu, Zhiqing, 2019. "Reasons for recent stagnancy of carbon emissions in China's industrial sectors," Energy, Elsevier, vol. 172(C), pages 457-466.
    10. Liu, Shangwei & Tian, Xin & Cai, Wenjia & Chen, Weiqiang & Wang, Yafei, 2018. "How the transitions in iron and steel and construction material industries impact China’s CO2 emissions: Comprehensive analysis from an inter-sector linked perspective," Applied Energy, Elsevier, vol. 211(C), pages 64-75.
    11. Liang Liu & Lianshui Li, 2021. "The effect of directed technical change on carbon dioxide emissions: evidence from China’s industrial sector at the provincial level," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2463-2486, July.
    12. Wang, Xiaoling & Zhang, Tianyue & Nathwani, Jatin & Yang, Fangming & Shao, Qinglong, 2022. "Environmental regulation, technology innovation, and low carbon development: Revisiting the EKC Hypothesis, Porter Hypothesis, and Jevons’ Paradox in China's iron & steel industry," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    13. Liu, Xianbing & Fan, Yongbin & Wang, Can, 2017. "An estimation of the effect of carbon pricing for CO2 mitigation in China’s cement industry," Applied Energy, Elsevier, vol. 185(P1), pages 671-686.
    14. Wang, Changjian & Wang, Fei & Zhang, Xinlin & Yang, Yu & Su, Yongxian & Ye, Yuyao & Zhang, Hongou, 2017. "Examining the driving factors of energy related carbon emissions using the extended STIRPAT model based on IPAT identity in Xinjiang," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 51-61.
    15. Lijun Zeng & Laijun Zhao & Qin Wang & Bingcheng Wang & Yuan Ma & Wei Cui & Yujing Xie, 2018. "Modeling Interprovincial Cooperative Energy Saving in China: An Electricity Utilization Perspective," Energies, MDPI, vol. 11(1), pages 1-25, January.
    16. Villanthenkodath, Muhammed Ashiq & Mahalik, Mantu Kumar, 2021. "Does economic growth respond to electricity consumption asymmetrically in Bangladesh? The implication for environmental sustainability," Energy, Elsevier, vol. 233(C).
    17. Zhengyun Jiang & Yun Feng & Jinping Song & Chengzhen Song & Xiaodi Zhao & Chi Zhang, 2023. "Study on the Spatial–Temporal Pattern Evolution and Carbon Emission Reduction Effect of Industry–City Integration in the Yellow River Basin," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
    18. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    19. Hong, Zitao & Peng, Zhen & Zhang, Liumei, 2022. "Game analysis on the choice of emission trading among industrial enterprises driven by data," Energy, Elsevier, vol. 239(PE).
    20. Abdul Rehman & Hengyun Ma & Magdalena Radulescu & Crenguta Ileana Sinisi & Zahid Yousaf, 2021. "Energy Crisis in Pakistan and Economic Progress: Decoupling the Impact of Coal Energy Consumption in Power and Brick Kilns," Mathematics, MDPI, vol. 9(17), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2249-:d:1081054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.