IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i20p15133-d1264852.html
   My bibliography  Save this article

Economic Viability of NaS Batteries for Optimal Microgrid Operation and Hosting Capacity Enhancement under Uncertain Conditions

Author

Listed:
  • Mohammed M. Alhaider

    (Department of Electrical Engineering, College of Engineering in Wadi Alddawasir, Prince Sattam Bin Abdulaziz University, Wadi Alddawasir 11991, Saudi Arabia)

  • Ziad M. Ali

    (Department of Electrical Engineering, College of Engineering in Wadi Alddawasir, Prince Sattam Bin Abdulaziz University, Wadi Alddawasir 11991, Saudi Arabia
    Electrical Engineering Department, Aswan Faculty of Engineering, Aswan University, Aswan 81542, Egypt)

  • Mostafa H. Mostafa

    (Electrical Power and Machines Department, International Academy for Engineering and Media Science, Cairo 12411, Egypt)

  • Shady H. E. Abdel Aleem

    (Department of Electrical Engineering, Institute of Aviation Engineering and Technology, Giza 12658, Egypt)

Abstract

Recent developments have increased the availability and prevalence of renewable energy sources (RESs) in grid-connected microgrids (MGs). As a result, the operation of an MG with numerous RESs has received considerable attention during the past few years. However, the variability and unpredictability of RESs have a substantial adverse effect on the accuracy of MG energy management. In order to obtain accurate outcomes, the analysis of the MG operation must consider the uncertainty parameters of RESs, market pricing, and electrical loads. As a result, our study has focused on load demand variations, intermittent RESs, and market price volatility. In this regard, energy storage is the most crucial facility to strengthen the MG’s reliability, especially in light of the rising generation of RESs. This work provides a two-stage optimization method for creating grid-connected MG operations. The optimal size and location of the energy storage are first provided to support the hosting capacity (HC) and the self-consumption rate (SCR) of the RESs. Second, an optimal constrained operating strategy for the grid-connected MG is proposed to minimize the MG operating cost while taking into account the optimal size and location of the energy storage that was formerly determined. The charge–discharge balance is the primary criterion in determining the most effective operating plan, which also considers the RES and MG limitations on operation. The well-known Harris hawks optimizer (HHO) is used to solve the optimization problem. The results showed that the proper positioning of the battery energy storage enhances the MG’s performance, supports the RESs’ SCR (reached 100% throughout the day), and increases the HC of RESs (rising from 8.863 MW to 10.213 MW). Additionally, when a battery energy storage system is connected to the MG, the operating costs are significantly reduced, with a savings percentage rate of 23.8%.

Suggested Citation

  • Mohammed M. Alhaider & Ziad M. Ali & Mostafa H. Mostafa & Shady H. E. Abdel Aleem, 2023. "Economic Viability of NaS Batteries for Optimal Microgrid Operation and Hosting Capacity Enhancement under Uncertain Conditions," Sustainability, MDPI, vol. 15(20), pages 1-24, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:15133-:d:1264852
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/20/15133/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/20/15133/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Okay, Kamil & Eray, Sermet & Eray, Aynur, 2022. "Development of prototype battery management system for PV system," Renewable Energy, Elsevier, vol. 181(C), pages 1294-1304.
    2. Li, Haoran & Zhang, Chenghui & Sun, Bo, 2021. "Optimal design for component capacity of integrated energy system based on the active dispatch mode of multiple energy storages," Energy, Elsevier, vol. 227(C).
    3. Maen Z. Kreishan & Ahmed F. Zobaa, 2023. "Scenario-Based Uncertainty Modeling for Power Management in Islanded Microgrid Using the Mixed-Integer Distributed Ant Colony Optimization," Energies, MDPI, vol. 16(10), pages 1-30, May.
    4. Alghamdi, Baheej & Cañizares, Claudio, 2022. "Frequency and voltage coordinated control of a grid of AC/DC microgrids," Applied Energy, Elsevier, vol. 310(C).
    5. Samadi, Afshin & Shayesteh, Ebrahim & Eriksson, Robert & Rawn, Barry & Söder, Lennart, 2014. "Multi-objective coordinated droop-based voltage regulation in distribution grids with PV systems," Renewable Energy, Elsevier, vol. 71(C), pages 315-323.
    6. Xianjing Zhong & Xianbo Sun & Yuhan Wu, 2022. "A Capacity Optimization Method for a Hybrid Energy Storage Microgrid System Based on an Augmented ε- Constraint Method," Energies, MDPI, vol. 15(20), pages 1-23, October.
    7. Wei Wei & Li Ye & Yi Fang & Yingchun Wang & Xi Chen & Zhenhua Li, 2023. "Optimal Allocation of Energy Storage Capacity in Microgrids Considering the Uncertainty of Renewable Energy Generation," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    8. Hazır, Öncü & Ulusoy, Gündüz, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," International Journal of Production Economics, Elsevier, vol. 223(C).
    9. Muhyaddin Rawa & Abdullah Abusorrah & Yusuf Al-Turki & Saad Mekhilef & Mostafa H. Mostafa & Ziad M. Ali & Shady H. E. Abdel Aleem, 2020. "Optimal Allocation and Economic Analysis of Battery Energy Storage Systems: Self-Consumption Rate and Hosting Capacity Enhancement for Microgrids with High Renewable Penetration," Sustainability, MDPI, vol. 12(23), pages 1-25, December.
    10. Caparrós Mancera, Julio José & Saenz, Jaime Luis & López, Eduardo & Andújar, José Manuel & Segura Manzano, Francisca & Vivas, Francisco José & Isorna, Fernando, 2022. "Experimental analysis of the effects of supercapacitor banks in a renewable DC microgrid," Applied Energy, Elsevier, vol. 308(C).
    11. Mansouri, S.A. & Ahmarinejad, A. & Nematbakhsh, E. & Javadi, M.S. & Esmaeel Nezhad, A. & Catalão, J.P.S., 2022. "A sustainable framework for multi-microgrids energy management in automated distribution network by considering smart homes and high penetration of renewable energy resources," Energy, Elsevier, vol. 245(C).
    12. Öncü Hazir & Gündüz Ulusoy, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," Post-Print hal-02898162, HAL.
    13. Shaila Arif & Ata E Rabbi & Shams Uddin Ahmed & Molla Shahadat Hossain Lipu & Taskin Jamal & Tareq Aziz & Mahidur R. Sarker & Amna Riaz & Talal Alharbi & Muhammad Majid Hussain, 2022. "Enhancement of Solar PV Hosting Capacity in a Remote Industrial Microgrid: A Methodical Techno-Economic Approach," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
    14. Seung Wan Kim & Jip Kim & Young Gyu Jin & Yong Tae Yoon, 2016. "Optimal Bidding Strategy for Renewable Microgrid with Active Network Management," Energies, MDPI, vol. 9(1), pages 1-15, January.
    15. Villanueva-Rosario, Junior Alexis & Santos-García, Félix & Aybar-Mejía, Miguel Euclides & Mendoza-Araya, Patricio & Molina-García, Angel, 2022. "Coordinated ancillary services, market participation and communication of multi-microgrids: A review," Applied Energy, Elsevier, vol. 308(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Orlando Durán & Paulo Afonso & Víctor Jiménez & Katty Carvajal, 2023. "Cost of Ownership of Spare Parts under Uncertainty: Integrating Reliability and Costs," Mathematics, MDPI, vol. 11(15), pages 1-23, July.
    2. Liu, Zhixue & Ding, Ronggui & Wang, Lei & Song, Rui & Song, Xinyi, 2023. "Cooperation in an uncertain environment: The impact of stakeholders' concerted action on collaborative innovation projects risk management," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    3. Shahsavar, Aria & Sadeghi, J. Kiarash & Shockley, Jeff & Ojha, Divesh, 2021. "On the relationship between lean scheduling and economic performance in shipbuilding: A proposed model and comparative evaluation," International Journal of Production Economics, Elsevier, vol. 239(C).
    4. Zhou, Kaile & Fei, Zhineng & Hu, Rong, 2023. "Hybrid robust decentralized optimization of emission-aware multi-energy microgrids considering multiple uncertainties," Energy, Elsevier, vol. 265(C).
    5. Ram, Jiwat, 2023. "Investigating staff capabilities to make projects resilient: A systematic literature review and future directions," International Journal of Production Economics, Elsevier, vol. 255(C).
    6. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    7. A.S. Jameel Hassan & Umar Marikkar & G.W. Kasun Prabhath & Aranee Balachandran & W.G. Chaminda Bandara & Parakrama B. Ekanayake & Roshan I. Godaliyadda & Janaka B. Ekanayake, 2021. "A Sensitivity Matrix Approach Using Two-Stage Optimization for Voltage Regulation of LV Networks with High PV Penetration," Energies, MDPI, vol. 14(20), pages 1-24, October.
    8. Mario Versaci & Fabio La Foresta, 2024. "Fuzzy Approach for Managing Renewable Energy Flows for DC-Microgrid with Composite PV-WT Generators and Energy Storage System," Energies, MDPI, vol. 17(2), pages 1-31, January.
    9. Kim, S. & Pollitt, M. & Jin, Y. & Yoon, Y., 2017. "Contractual Framework for the Devolution of System Balancing Responsibility from the Transmission System Operator to Distribution System Operators," Cambridge Working Papers in Economics 1738, Faculty of Economics, University of Cambridge.
    10. Aouss Gabash & Pu Li, 2016. "On Variable Reverse Power Flow-Part II: An Electricity Market Model Considering Wind Station Size and Location," Energies, MDPI, vol. 9(4), pages 1-13, March.
    11. Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).
    12. Ranaweera, Iromi & Midtgård, Ole-Morten & Korpås, Magnus, 2017. "Distributed control scheme for residential battery energy storage units coupled with PV systems," Renewable Energy, Elsevier, vol. 113(C), pages 1099-1110.
    13. Zhang, Bin & Hu, Weihao & Ghias, Amer M.Y.M. & Xu, Xiao & Chen, Zhe, 2022. "Multi-agent deep reinforcement learning-based coordination control for grid-aware multi-buildings," Applied Energy, Elsevier, vol. 328(C).
    14. Zejun Tong & Chun Zhang & Xiaotai Wu & Pengcheng Gao & Shuang Wu & Haoyu Li, 2023. "Economic Optimization Control Method of Grid-Connected Microgrid Based on Improved Pinning Consensus," Energies, MDPI, vol. 16(3), pages 1-31, January.
    15. Silva, Jéssica Alice A. & López, Juan Camilo & Guzman, Cindy Paola & Arias, Nataly Bañol & Rider, Marcos J. & da Silva, Luiz C.P., 2023. "An IoT-based energy management system for AC microgrids with grid and security constraints," Applied Energy, Elsevier, vol. 337(C).
    16. Mousavizade, Mirsaeed & Bai, Feifei & Garmabdari, Rasoul & Sanjari, Mohammad & Taghizadeh, Foad & Mahmoudian, Ali & Lu, Junwei, 2023. "Adaptive control of V2Gs in islanded microgrids incorporating EV owner expectations," Applied Energy, Elsevier, vol. 341(C).
    17. Xu, Jiazhu & Yi, Yuqin, 2023. "Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: A Nash bargaining approach," Energy, Elsevier, vol. 263(PB).
    18. Muhyaddin Rawa & Abdullah Abusorrah & Yusuf Al-Turki & Saad Mekhilef & Mostafa H. Mostafa & Ziad M. Ali & Shady H. E. Abdel Aleem, 2020. "Optimal Allocation and Economic Analysis of Battery Energy Storage Systems: Self-Consumption Rate and Hosting Capacity Enhancement for Microgrids with High Renewable Penetration," Sustainability, MDPI, vol. 12(23), pages 1-25, December.
    19. Hirwa, Jusse & Zolan, Alexander & Becker, William & Flamand, Tülay & Newman, Alexandra, 2023. "Optimizing design and dispatch of a resilient renewable energy microgrid for a South African hospital," Applied Energy, Elsevier, vol. 348(C).
    20. Md. Shouquat Hossain & Naseer Abboodi Madlool & Ali Wadi Al-Fatlawi & Mamdouh El Haj Assad, 2023. "High Penetration of Solar Photovoltaic Structure on the Grid System Disruption: An Overview of Technology Advancement," Sustainability, MDPI, vol. 15(2), pages 1-25, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:15133-:d:1264852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.