IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i20p14989-d1261841.html
   My bibliography  Save this article

The Drivers and Barriers of the Solar Water Heating Entrepreneurial System: A Cost–Benefit Analysis

Author

Listed:
  • Sıdıka Ece Yılmaz

    (Career Planning Application and Research Center, Adana Alparslan Türkeş Science and Technology University, 46278 Adana, Turkey)

  • Hasan Yildizhan

    (Engineering Faculty, Energy Systems Engineering, Adana Alparslan Türkeş Science and Technology University, 46278 Adana, Turkey)

  • Cihan Yıldırım

    (Vocational School, Ağrı İbrahim Çeçen University, 04100 Ağrı, Turkey)

  • Chuang-Yao Zhao

    (School of Building Services Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • João Gomes

    (Department of Building Engineering, Energy Systems and Sustainability Science, Faculty of Engineering and Sustainable Development, The University of Gävle, 801 76 Gävle, Sweden)

  • Tarik Alkharusi

    (Clean Energy Processes (CEP) Laboratory, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK)

Abstract

Sustainable development objectives place a high priority on entrepreneurship and renewable energy. Supporting entrepreneurial activities in the renewable energy industry can provide economic growth and employment to accomplish the Sustainable Development Goals Agenda 2030. Solar water heating systems can provide clear benefits for both the environment and economic growth. There is a gap in the literature regarding the study of the factors hindering or driving the development of the solar water heating system industry. This study aims to investigate the solar water heating system industry’s challenges and attempts to define the drivers to further develop the industry. Thus, solar water heating entrepreneurship parameters can be identified. Additionally, energy savings and carbon dioxide emissions were calculated for the region to raise awareness among consumers. This study used the qualitative analysis method through semi-structured interviews with 40 business owners in Adana/Turkey. The findings showed that the industry has administrative, production, political, and economic issues; there is a need for economic support and expanding education and control mechanisms. Also, the payback period is 1.63~3.27 years for a solar water heating system and this system prevents 800.75 kg of CO 2 emission. The study has implications for policy-making, practice, scientific research, and the SDGs Agenda 2030.

Suggested Citation

  • Sıdıka Ece Yılmaz & Hasan Yildizhan & Cihan Yıldırım & Chuang-Yao Zhao & João Gomes & Tarik Alkharusi, 2023. "The Drivers and Barriers of the Solar Water Heating Entrepreneurial System: A Cost–Benefit Analysis," Sustainability, MDPI, vol. 15(20), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14989-:d:1261841
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/20/14989/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/20/14989/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Houri, Ahmad, 2006. "Solar water heating in Lebanon: Current status and future prospects," Renewable Energy, Elsevier, vol. 31(5), pages 663-675.
    2. Gastli, Adel & Charabi, Yassine, 2011. "Solar water heating initiative in Oman energy saving and carbon credits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1851-1856, May.
    3. Maribel Guerrero & David Urbano, 2019. "Effectiveness of technology transfer policies and legislation in fostering entrepreneurial innovations across continents: an overview," The Journal of Technology Transfer, Springer, vol. 44(5), pages 1347-1366, October.
    4. André Wüste & Peter Schmuck, 2012. "Bioenergy Villages and Regions in Germany: An Interview Study with Initiators of Communal Bioenergy Projects on the Success Factors for Restructuring the Energy Supply of the Community," Sustainability, MDPI, vol. 4(2), pages 1-13, February.
    5. Senkal, Ozan & Kuleli, Tuncay, 2009. "Estimation of solar radiation over Turkey using artificial neural network and satellite data," Applied Energy, Elsevier, vol. 86(7-8), pages 1222-1228, July.
    6. Gautam, Abhishek & Chamoli, Sunil & Kumar, Alok & Singh, Satyendra, 2017. "A review on technical improvements, economic feasibility and world scenario of solar water heating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 541-562.
    7. Yasin Akkuş & Kıymet Çalıyurt, 2022. "The Role of Sustainable Entrepreneurship in UN Sustainable Development Goals: The Case of TED Talks," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    8. Timilsina, Govinda R. & Kurdgelashvili, Lado & Narbel, Patrick A., 2011. "A review of solar energy : markets, economics and policies," Policy Research Working Paper Series 5845, The World Bank.
    9. Rosas-Flores, Jorge Alberto & Rosas-Flores, Dionicio & Fernández Zayas, José Luis, 2016. "Potential energy saving in urban and rural households of Mexico by use of solar water heaters, using geographical information system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 243-252.
    10. Bulut, Hüsamettin & Büyükalaca, Orhan, 2007. "Simple model for the generation of daily global solar-radiation data in Turkey," Applied Energy, Elsevier, vol. 84(5), pages 477-491, May.
    11. Patlitzianas, Konstantinos D., 2011. "Solar energy in Egypt: Significant business opportunities," Renewable Energy, Elsevier, vol. 36(9), pages 2305-2311.
    12. Aydin, Erdal & Eichholtz, Piet & Yönder, Erkan, 2018. "The economics of residential solar water heaters in emerging economies: The case of Turkey," Energy Economics, Elsevier, vol. 75(C), pages 285-299.
    13. Gan, Lin & Eskeland, Gunnar S. & Kolshus, Hans H., 2007. "Green electricity market development: Lessons from Europe and the US," Energy Policy, Elsevier, vol. 35(1), pages 144-155, January.
    14. Hasan Yildizhan & Cihan Yıldırım & Shiva Gorjian & Arman Ameen, 2023. "How May New Energy Investments Change the Sustainability of the Turkish Industrial Sector?," Sustainability, MDPI, vol. 15(2), pages 1-15, January.
    15. Mehran Dehghan & Carlos F. Pfeiffer & Elyas Rakhshani & Reza Bakhshi-Jafarabadi, 2021. "A Review on Techno-Economic Assessment of Solar Water Heating Systems in the Middle East," Energies, MDPI, vol. 14(16), pages 1-28, August.
    16. Muneer, T. & Asif, M. & Cizmecioglu, Z. & Ozturk, H.K., 2008. "Prospects for solar water heating within Turkish textile industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 807-823, April.
    17. Muhammad Irfan & Zhen-Yu Zhao & Munir Ahmad & Marie Claire Mukeshimana, 2019. "Solar Energy Development in Pakistan: Barriers and Policy Recommendations," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehran Dehghan & Carlos F. Pfeiffer & Elyas Rakhshani & Reza Bakhshi-Jafarabadi, 2021. "A Review on Techno-Economic Assessment of Solar Water Heating Systems in the Middle East," Energies, MDPI, vol. 14(16), pages 1-28, August.
    2. El-Sebaii, A.A. & Al-Hazmi, F.S. & Al-Ghamdi, A.A. & Yaghmour, S.J., 2010. "Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia," Applied Energy, Elsevier, vol. 87(2), pages 568-576, February.
    3. Shubham Gupta & Amit Kumar Singh & Sachin Mishra & Pradeep Vishnuram & Nagaraju Dharavat & Narayanamoorthi Rajamanickam & Ch. Naga Sai Kalyan & Kareem M. AboRas & Naveen Kumar Sharma & Mohit Bajaj, 2023. "Estimation of Solar Radiation with Consideration of Terrestrial Losses at a Selected Location—A Review," Sustainability, MDPI, vol. 15(13), pages 1-29, June.
    4. Deveci, Muhammet & Pamucar, Dragan & Oguz, Elif, 2022. "Floating photovoltaic site selection using fuzzy rough numbers based LAAW and RAFSI model," Applied Energy, Elsevier, vol. 324(C).
    5. Qiu, Shoufeng & Ruth, Matthias & Ghosh, Sanchari, 2015. "Evacuated tube collectors: A notable driver behind the solar water heater industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 580-588.
    6. Ge, T.S. & Wang, R.Z. & Xu, Z.Y. & Pan, Q.W. & Du, S. & Chen, X.M. & Ma, T. & Wu, X.N. & Sun, X.L. & Chen, J.F., 2018. "Solar heating and cooling: Present and future development," Renewable Energy, Elsevier, vol. 126(C), pages 1126-1140.
    7. Mostafaeipour, Ali & Zarezade, Marjan & Goudarzi, Hossein & Rezaei-Shouroki, Mostafa & Qolipour, Mojtaba, 2017. "Investigating the factors on using the solar water heaters for dry arid regions: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 157-166.
    8. Li, Shuai & Ma, Hongjie & Li, Weiyi, 2017. "Typical solar radiation year construction using k-means clustering and discrete-time Markov chain," Applied Energy, Elsevier, vol. 205(C), pages 720-731.
    9. Li, Huashan & Ma, Weibin & Lian, Yongwang & Wang, Xianlong, 2010. "Estimating daily global solar radiation by day of year in China," Applied Energy, Elsevier, vol. 87(10), pages 3011-3017, October.
    10. Teke, Ahmet & Yıldırım, H. Başak & Çelik, Özgür, 2015. "Evaluation and performance comparison of different models for the estimation of solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1097-1107.
    11. Mohanty, Sthitapragyan & Patra, Prashanta Kumar & Sahoo, Sudhansu Sekhar, 2016. "Prediction and application of solar radiation with soft computing over traditional and conventional approach – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 778-796.
    12. Almaktar, Mohamed & Shaaban, Mohamed, 2021. "Prospects of renewable energy as a non-rivalry energy alternative in Libya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    13. Farjana, Shahjadi Hisan & Huda, Nazmul & Mahmud, M.A. Parvez & Saidur, R., 2018. "Solar process heat in industrial systems – A global review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2270-2286.
    14. Sharma, Ashish K. & Sharma, Chandan & Mullick, Subhash C. & Kandpal, Tara C., 2017. "Solar industrial process heating: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 124-137.
    15. Makade, Rahul G. & Chakrabarti, Siddharth & Jamil, Basharat & Sakhale, C.N., 2020. "Estimation of global solar radiation for the tropical wet climatic region of India: A theory of experimentation approach," Renewable Energy, Elsevier, vol. 146(C), pages 2044-2059.
    16. Mahzouni, Arian, 2019. "The role of institutional entrepreneurship in emerging energy communities: The town of St. Peter in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 297-308.
    17. Mansoor Mustafa & Muhammad Omer Farooq Malik & Ahsen Maqsoom, 2024. "Barriers to Solar PV Adoption in Developing Countries: Multiple Regression and Analytical Hierarchy Process Approach," Sustainability, MDPI, vol. 16(3), pages 1-19, January.
    18. Sener, Can & Fthenakis, Vasilis, 2014. "Energy policy and financing options to achieve solar energy grid penetration targets: Accounting for external costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 854-868.
    19. Vergili, Ilda & Kaya, Yasemin & Sen, Unal & Gönder, Zeren Beril & Aydiner, Coskun, 2012. "Techno-economic analysis of textile dye bath wastewater treatment by integrated membrane processes under the zero liquid discharge approach," Resources, Conservation & Recycling, Elsevier, vol. 58(C), pages 25-35.
    20. Ebers Broughel, Anna, 2019. "On the ground in sunny Mexico: A case study of consumer perceptions and willingness to pay for solar-powered devices," World Development Perspectives, Elsevier, vol. 15(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14989-:d:1261841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.