IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i20p14910-d1260593.html
   My bibliography  Save this article

Synthesis and Characterization of MnWO 4 -CNT for Supercapacitor Applications

Author

Listed:
  • Mohammad Bagher Askari

    (Department of Semiconductor, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman P.O. Box 76318-85356, Iran)

  • Fatemeh Jamali

    (Department of Physics, Faculty of Science, University of Guilan, Rasht P.O. Box 41335-1914, Iran)

  • Mohammad Taghi Tourchi Moghadam

    (Department of Physics, Faculty of Science, University of Guilan, Rasht P.O. Box 41335-1914, Iran)

  • Sadegh Azizi

    (Department of Physics, Faculty of Science, University of Guilan, Rasht P.O. Box 41335-1914, Iran)

  • Majid Seifi

    (Department of Physics, Faculty of Science, University of Guilan, Rasht P.O. Box 41335-1914, Iran)

Abstract

This study reveals, for the first time, the excellent capability of MnWO 4 -CNT as a supercapacitor electrode compared to MnWO 4 . In previous research conducted on this compound, RGO was used to enhance its electrochemical properties. The objective of this study is to investigate the effects of CNT on the electrochemical properties of the compound, which also yielded promising results. The physical and morphological analysis of MnWO 4 and MnWO 4 -CNT was conducted using Raman, XRD, BET, and SEM-EDX techniques. The electrochemical performance of the samples was assessed through cyclic voltammetry (CV), impedance electrochemical spectroscopy (EIS), and galvanostatic charge–discharge (GCD). Notably, MnWO 4 -CNT exhibited a significant specific capacitance of 1849.14 F·g −1 at a scan rate of 10 mV·s −1 . The stability evaluation of the samples demonstrated a high capacitance retention of 81.2% and 89.4% for MnWO 4 and MnWO 4 -CNT, respectively. The substantial specific capacity, along with the favorable stability of MnWO 4 -CNT, positions it as a highly promising material for utilization in supercapacitor electrodes.

Suggested Citation

  • Mohammad Bagher Askari & Fatemeh Jamali & Mohammad Taghi Tourchi Moghadam & Sadegh Azizi & Majid Seifi, 2023. "Synthesis and Characterization of MnWO 4 -CNT for Supercapacitor Applications," Sustainability, MDPI, vol. 15(20), pages 1-12, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14910-:d:1260593
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/20/14910/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/20/14910/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Florinda Martins & Carlos Felgueiras & Miroslava Smitkova & Nídia Caetano, 2019. "Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries," Energies, MDPI, vol. 12(6), pages 1-11, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tariq Ullah & Krzysztof Sobczak & Grzegorz Liśkiewicz & Amjid Khan, 2022. "Two-Dimensional URANS Numerical Investigation of Critical Parameters on a Pitch Oscillating VAWT Airfoil under Dynamic Stall," Energies, MDPI, vol. 15(15), pages 1-19, August.
    2. Zhao, Qin & Zhang, Houcheng & Hu, Ziyang & Hou, Shujin, 2021. "Performance evaluation of a new hybrid system consisting of a photovoltaic module and an absorption heat transformer for electricity production and heat upgrading," Energy, Elsevier, vol. 216(C).
    3. Karol Tucki & Małgorzata Krzywonos & Olga Orynycz & Adam Kupczyk & Anna Bączyk & Izabela Wielewska, 2021. "Analysis of the Possibility of Fulfilling the Paris Agreement by the Visegrad Group Countries," Sustainability, MDPI, vol. 13(16), pages 1-21, August.
    4. Sitka, Andrzej & Szulc, Piotr & Smykowski, Daniel & Jodkowski, Wiesław, 2021. "Application of poultry manure as an energy resource by its gasification in a prototype rotary counterflow gasifier," Renewable Energy, Elsevier, vol. 175(C), pages 422-429.
    5. Gayo-Abeleira, Miguel & Santos, Carlos & Javier Rodríguez Sánchez, Francisco & Martín, Pedro & Antonio Jiménez, José & Santiso, Enrique, 2022. "Aperiodic two-layer energy management system for community microgrids based on blockchain strategy," Applied Energy, Elsevier, vol. 324(C).
    6. Radosław Miśkiewicz, 2020. "Efficiency of Electricity Production Technology from Post-Process Gas Heat: Ecological, Economic and Social Benefits," Energies, MDPI, vol. 13(22), pages 1-15, November.
    7. Husam Rjoub & Jamiu Adetola Odugbesan & Tomiwa Sunday Adebayo & Wing-Keung Wong, 2021. "Investigating the Causal Relationships among Carbon Emissions, Economic Growth, and Life Expectancy in Turkey: Evidence from Time and Frequency Domain Causality Techniques," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    8. Hasan Huseyin Coban & Wojciech Lewicki & Ewelina Sendek-Matysiak & Zbigniew Łosiewicz & Wojciech Drożdż & Radosław Miśkiewicz, 2022. "Electric Vehicles and Vehicle–Grid Interaction in the Turkish Electricity System," Energies, MDPI, vol. 15(21), pages 1-19, November.
    9. Batara Surya & Hamsina Hamsina & Ridwan Ridwan & Baharuddin Baharuddin & Firman Menne & Andi Tenri Fitriyah & Emil Salim Rasyidi, 2020. "The Complexity of Space Utilization and Environmental Pollution Control in the Main Corridor of Makassar City, South Sulawesi, Indonesia," Sustainability, MDPI, vol. 12(21), pages 1-41, November.
    10. Eyni, Leila & Stanko, Milan & Schümann, Heiner, 2022. "Methods for early-phase planning of offshore fields considering environmental performance," Energy, Elsevier, vol. 256(C).
    11. Pinto, G.M. & da Costa, R.B.R. & de Souza, T.A.Z. & Rosa, A.J.A.C. & Raats, O.O. & Roque, L.F.A. & Frez, G.V. & Coronado, C.J.R., 2023. "Experimental investigation of performance and emissions of a CI engine operating with HVO and farnesane in dual-fuel mode with natural gas and biogas," Energy, Elsevier, vol. 277(C).
    12. Mantas Svazas & Yuriy Bilan & Valentinas Navickas & Małgorzata Okręglicka, 2023. "Energy Transformation in Municipal Areas—Key Datasets and Their Influence on Process Evaluation," Energies, MDPI, vol. 16(17), pages 1-20, August.
    13. Cristiana Tudor & Robert Sova, 2021. "On the Impact of GDP per Capita, Carbon Intensity and Innovation for Renewable Energy Consumption: Worldwide Evidence," Energies, MDPI, vol. 14(19), pages 1-25, October.
    14. Dan Costin Nitescu & Valentin Murgu, 2022. "Factors Supporting the Transition to a “Green” European Economy and Funding Mechanisms," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 24(61), pages 630-630, August.
    15. Zeng, Jingjing & Bao, Rui & McFarland, Michael, 2022. "Clean energy substitution: The effect of transitioning from coal to gas on air pollution," Energy Economics, Elsevier, vol. 107(C).
    16. Ionuț-Alexandru Spânu & Alexandru Ozunu & Dacinia Crina Petrescu & Ruxandra Malina Petrescu-Mag, 2022. "A Comparative View of Agri-Environmental Indicators and Stakeholders’ Assessment of Their Quality," Agriculture, MDPI, vol. 12(4), pages 1-23, March.
    17. Mussawir Ul Mehmood & Abasin Ulasyar & Waleed Ali & Kamran Zeb & Haris Sheh Zad & Waqar Uddin & Hee-Je Kim, 2023. "A New Cloud-Based IoT Solution for Soiling Ratio Measurement of PV Systems Using Artificial Neural Network," Energies, MDPI, vol. 16(2), pages 1-14, January.
    18. Sujoy Das & Avijit Debanth, 2023. "Impact of CO2 emission on life expectancy in India: an autoregressive distributive lag (ARDL) bound test approach," Future Business Journal, Springer, vol. 9(1), pages 1-9, December.
    19. Anna Komarova, 2022. "State Regulation of Energy Transition and Economic Development," Energies, MDPI, vol. 15(12), pages 1-13, June.
    20. Mahmutoğulları, Özlem & Yaman, Hande, 2023. "Robust alternative fuel refueling station location problem with routing under decision-dependent flow uncertainty," European Journal of Operational Research, Elsevier, vol. 306(1), pages 173-188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14910-:d:1260593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.