IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14055-d1245323.html
   My bibliography  Save this article

Carbon Emissions Assessment for Building Decoration Based on Life Cycle Assessment: A Case Study of Office Buildings

Author

Listed:
  • Huanyu Wu

    (College of Civil & Transportation Engineering, Shenzhen University, Shenzhen 518060, China)

  • Wenwen Zhou

    (College of Civil & Transportation Engineering, Shenzhen University, Shenzhen 518060, China)

  • Kunyang Chen

    (College of Civil & Transportation Engineering, Shenzhen University, Shenzhen 518060, China)

  • Lianxiang Zhang

    (College of Civil & Transportation Engineering, Shenzhen University, Shenzhen 518060, China
    Shenzhen Building Decoration (Group) Co., Ltd., Shenzhen 518045, China)

  • Zicheng Zhang

    (China Construction First Group, The Fifth Construction Co., Ltd., Beijing 100024, China)

  • Yanqiu Li

    (China Construction First Group, The Fifth Construction Co., Ltd., Beijing 100024, China)

  • Zhijun Hu

    (China Construction First Group, The Fifth Construction Co., Ltd., Beijing 100024, China)

Abstract

The continuous growth of interior decoration activities has caused a massive consumption of energy and materials, which has contributed to a large amount of carbon emissions in the construction sector. The carbon emissions of building decoration were overlooked in previous studies. Hence, the life cycle assessment (LCA) approach was employed to build a life cycle carbon emissions model for building decoration. An office building was selected to verify the availability. The results show that the carbon emissions intensity of the decoration project was 254.5 kg CO 2 eq/m 2 . The operation stage was the most crucial carbon emissions contributor in the life cycle of building decoration, accounting for 49.8%; followed by the materials embodied impact stage, which contributed 36.3%; while the remaining three stages, namely, the decoration, transportation, and end-of-life stage, had less carbon emissions, accounting for 6.8%, 5.3%, and 1.8%. Improving the performance of inorganic materials, optimizing transportation routes and energy structure, and dismantling plan optimization can reduce carbon emissions. The findings of this study provide a theoretical basis and fundamental data for carbon emissions reduction and sustainable development strategies for building decoration.

Suggested Citation

  • Huanyu Wu & Wenwen Zhou & Kunyang Chen & Lianxiang Zhang & Zicheng Zhang & Yanqiu Li & Zhijun Hu, 2023. "Carbon Emissions Assessment for Building Decoration Based on Life Cycle Assessment: A Case Study of Office Buildings," Sustainability, MDPI, vol. 15(19), pages 1-18, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14055-:d:1245323
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14055/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14055/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sovacool, Benjamin K. & Brown, Marilyn A., 2010. "Twelve metropolitan carbon footprints: A preliminary comparative global assessment," Energy Policy, Elsevier, vol. 38(9), pages 4856-4869, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingyi Liu & Feng Gui & Qian Zhou & Huiwen Cai & Kaida Xu & Sheng Zhao, 2023. "Carbon Footprint of a Large Yellow Croaker Mariculture Models Based on Life-Cycle Assessment," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    2. Jukka Heinonen & Antti-Juhani Säynäjoki & Matti Kuronen & Seppo Junnila, 2012. "Are the Greenhouse Gas Implications of New Residential Developments Understood Wrongly?," Energies, MDPI, vol. 5(8), pages 1-20, August.
    3. Peter Marcotullio & Andrea Sarzynski & Jochen Albrecht & Niels Schulz & Jake Garcia, 2013. "The geography of global urban greenhouse gas emissions: an exploratory analysis," Climatic Change, Springer, vol. 121(4), pages 621-634, December.
    4. Riikka Kyrö & Jukka Heinonen & Antti Säynäjoki & Seppo Junnila, 2012. "Assessing the Potential of Climate Change Mitigation Actions in Three Different City Types in Finland," Sustainability, MDPI, vol. 4(7), pages 1-15, July.
    5. Aguiléra, Anne & Voisin, Marion, 2014. "Urban form, commuting patterns and CO2 emissions: What differences between the municipality’s residents and its jobs?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 243-251.
    6. Zhang, Yan & Li, Juan & Fath, Brian D. & Zheng, Hongmei & Xia, Linlin, 2015. "Analysis of urban carbon metabolic processes and a description of sectoral characteristics: A case study of Beijing," Ecological Modelling, Elsevier, vol. 316(C), pages 144-154.
    7. Dong, Huijuan & Geng, Yong & Xi, Fengming & Fujita, Tsuyoshi, 2013. "Carbon footprint evaluation at industrial park level: A hybrid life cycle assessment approach," Energy Policy, Elsevier, vol. 57(C), pages 298-307.
    8. Kennedy, Christopher & Demoullin, Stéphanie & Mohareb, Eugene, 2012. "Cities reducing their greenhouse gas emissions," Energy Policy, Elsevier, vol. 49(C), pages 774-777.
    9. Liu, Zhu & Feng, Kuishuang & Hubacek, Klaus & Liang, Sai & Anadon, Laura Diaz & Zhang, Chao & Guan, Dabo, 2015. "Four system boundaries for carbon accounts," Ecological Modelling, Elsevier, vol. 318(C), pages 118-125.
    10. Monstadt, Jochen & Wolff, Annika, 2015. "Energy transition or incremental change? Green policy agendas and the adaptability of the urban energy regime in Los Angeles," Energy Policy, Elsevier, vol. 78(C), pages 213-224.
    11. Nihit Goyal, 2021. "Limited Demand or Unreliable Supply? A Bibliometric Review and Computational Text Analysis of Research on Energy Policy in India," Sustainability, MDPI, vol. 13(23), pages 1-23, December.
    12. Nam, Hoseok & Nam, Hyungseok & Lee, Doyeon, 2021. "Potential of hydrogen replacement in natural-gas-powered fuel cells in Busan, South Korea based on the 2050 clean energy Master Plan of Busan Metropolitan City," Energy, Elsevier, vol. 221(C).
    13. Liu, Zhu & Liang, Sai & Geng, Yong & Xue, Bing & Xi, Fengming & Pan, Ying & Zhang, Tianzhu & Fujita, Tsuyoshi, 2012. "Features, trajectories and driving forces for energy-related GHG emissions from Chinese mega cites: The case of Beijing, Tianjin, Shanghai and Chongqing," Energy, Elsevier, vol. 37(1), pages 245-254.
    14. Chavez, Abel & Ramaswami, Anu, 2013. "Articulating a trans-boundary infrastructure supply chain greenhouse gas emission footprint for cities: Mathematical relationships and policy relevance," Energy Policy, Elsevier, vol. 54(C), pages 376-384.
    15. Galloway, David & Newman, Peter, 2014. "How to design a sustainable heavy industrial estate," Renewable Energy, Elsevier, vol. 67(C), pages 46-52.
    16. Charu Grover & Sangeeta Bansal & Adan L. Martinez-Cruz, "undated". "Influence of Social Network Effect and Incentive on Choice of Star Labeled Cars in India: A Latent Class Approach based on Choice Experiment," Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi Discussion Papers 18-05, Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi, India.
    17. Pasimeni, Maria Rita & Petrosillo, Irene & Aretano, Roberta & Semeraro, Teodoro & De Marco, Antonella & Zaccarelli, Nicola & Zurlini, Giovanni, 2014. "Scales, strategies and actions for effective energy planning: A review," Energy Policy, Elsevier, vol. 65(C), pages 165-174.
    18. Ramachandra, T.V. & Aithal, Bharath H. & Sreejith, K., 2015. "GHG footprint of major cities in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 473-495.
    19. Federica Cappelli & Gianni Guastella & Stefano Pareglio, 2021. "Urban Sprawl and Air Quality in European Cities: an Empirical Assessment," Working Papers 2021.07, Fondazione Eni Enrico Mattei.
    20. Zhang, Long & Bai, Wuliyasu & Xiao, Huijuan & Ren, Jingzheng, 2021. "Measuring and improving regional energy security: A methodological framework based on both quantitative and qualitative analysis," Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14055-:d:1245323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.