IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i16p12566-d1220197.html
   My bibliography  Save this article

Vulnerability Analysis of Bus Network Based on Land-Use Type of Bus Stops: The Case of Xi’an, China

Author

Listed:
  • Yanan Zhang

    (School of Electronic and Control Engineering, Chang’an University, Xi’an 710064, China)

  • Hongke Xu

    (School of Electronic and Control Engineering, Chang’an University, Xi’an 710064, China)

  • Qing-Chang Lu

    (School of Electronic and Control Engineering, Chang’an University, Xi’an 710064, China)

  • Shan Lin

    (School of Electronic and Control Engineering, Chang’an University, Xi’an 710064, China)

  • Jiacheng Song

    (College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China)

Abstract

The urban public transport network is closely related to urban construction and is susceptible to external influences, especially the bus network (BN). The measurement of the changes in the performance of BN under disruptions plays an important role in the development of bus systems. This paper takes the land-use type around each bus stop to modify the standard coverage range and then combines the attractive service area of the stop and the passenger flow as the opportunity coefficient to propose an improved accessibility model. Finally, the vulnerability of the BN based on the improved accessibility model in different time periods under four disruptions is analyzed. Taking BN in the central area of Xi’an as a case study, the results show that the BN is less vulnerable when stops are associated with high land-use type attractiveness, and regions with a single land-use type have high vulnerability levels. In addition, the land-use disruption causes larger-scale network vulnerability than topological disruptions. An interesting result, opposed to common sense, is found in stops within the top 10% of topological disruption failure probabilities, i.e., the BN is the most vulnerable during the off-peak night period. This study supplements the coordinated development of public transport and land use in future planning.

Suggested Citation

  • Yanan Zhang & Hongke Xu & Qing-Chang Lu & Shan Lin & Jiacheng Song, 2023. "Vulnerability Analysis of Bus Network Based on Land-Use Type of Bus Stops: The Case of Xi’an, China," Sustainability, MDPI, vol. 15(16), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12566-:d:1220197
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/16/12566/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/16/12566/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiang, Ruoyun & Lu, Qing-Chang & Peng, Zhong-Ren, 2018. "A station-based rail transit network vulnerability measure considering land use dependency," Journal of Transport Geography, Elsevier, vol. 66(C), pages 10-18.
    2. Yanan Zhang & Hongke Xu & Qing-Chang Lu & Xiaohui Fan, 2022. "Travel Time Reliability Analysis Considering Bus Bunching: A Case Study in Xi’an, China," Sustainability, MDPI, vol. 14(23), pages 1-15, November.
    3. Xueting Zhao & Liwei Hu & Xingzhong Wang & Jiabao Wu, 2022. "Study on Identification and Prevention of Traffic Congestion Zones Considering Resilience-Vulnerability of Urban Transportation Systems," Sustainability, MDPI, vol. 14(24), pages 1-23, December.
    4. Alan T. Murray & Timothy C. Matisziw & Tony H. Grubesic, 2008. "A Methodological Overview of Network Vulnerability Analysis," Growth and Change, Wiley Blackwell, vol. 39(4), pages 573-592, December.
    5. Berdica, Katja, 2002. "An introduction to road vulnerability: what has been done, is done and should be done," Transport Policy, Elsevier, vol. 9(2), pages 117-127, April.
    6. Chenxi Li & Xing Gao & Bao-Jie He & Jingyao Wu & Kening Wu, 2019. "Coupling Coordination Relationships between Urban-industrial Land Use Efficiency and Accessibility of Highway Networks: Evidence from Beijing-Tianjin-Hebei Urban Agglomeration, China," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    7. Yuan, Dongdong & Jiang, Wei & Sha, Aimin & Xiao, Jingjing & Wu, Wangjie & Wang, Teng, 2023. "Technology method and functional characteristics of road thermoelectric generator system based on Seebeck effect," Applied Energy, Elsevier, vol. 331(C).
    8. Mohammed Aljoufie & Mark Brussel & Mark Zuidgeest & Hedwig van Delden & Martin van Maarseveen, 2016. "Integrated analysis of land-use and transport policy interventions," Transportation Planning and Technology, Taylor & Francis Journals, vol. 39(4), pages 329-357, June.
    9. Jenelius, Erik & Petersen, Tom & Mattsson, Lars-Göran, 2006. "Importance and exposure in road network vulnerability analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(7), pages 537-560, August.
    10. Bell, Michael G.H. & Kurauchi, Fumitaka & Perera, Supun & Wong, Walter, 2017. "Investigating transport network vulnerability by capacity weighted spectral analysis," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 251-266.
    11. Thomas Straatemeier & Luca Bertolini, 2020. "How can planning for accessibility lead to more integrated transport and land-use strategies? Two examples from the Netherlands," European Planning Studies, Taylor & Francis Journals, vol. 28(9), pages 1713-1734, September.
    12. Anthony Chen & Chao Yang & Sirisak Kongsomsaksakul & Ming Lee, 2007. "Network-based Accessibility Measures for Vulnerability Analysis of Degradable Transportation Networks," Networks and Spatial Economics, Springer, vol. 7(3), pages 241-256, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Tao & Rong, Lili & Yan, Kesheng, 2019. "Vulnerability analysis and critical area identification of public transport system: A case of high-speed rail and air transport coupling system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 55-70.
    2. Mohamad Darayi & Kash Barker & Joost R. Santos, 2017. "Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network," Networks and Spatial Economics, Springer, vol. 17(4), pages 1111-1136, December.
    3. Jenelius, Erik & Mattsson, Lars-Göran, 2012. "Road network vulnerability analysis of area-covering disruptions: A grid-based approach with case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 746-760.
    4. Yu Miao & Anning Ni, 2019. "Vulnerability Analysis of Intercity Multimode Transportation Networks; A Case Study of the Yangtze River Delta," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
    5. Rodríguez-Núñez, Eduardo & García-Palomares, Juan Carlos, 2014. "Measuring the vulnerability of public transport networks," Journal of Transport Geography, Elsevier, vol. 35(C), pages 50-63.
    6. Lu, Qing-Chang & Zhang, Lei & Xu, Peng-Cheng & Cui, Xin & Li, Jing, 2022. "Modeling network vulnerability of urban rail transit under cascading failures: A Coupled Map Lattices approach," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    7. López, Fernando A. & Páez, Antonio & Carrasco, Juan A. & Ruminot, Natalia A., 2017. "Vulnerability of nodes under controlled network topology and flow autocorrelation conditions," Journal of Transport Geography, Elsevier, vol. 59(C), pages 77-87.
    8. Sugiura, Satoshi & Chen, Anthony, 2021. "Vulnerability analysis of cut-capacity structure and OD demand using Gomory-Hu tree method," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 111-127.
    9. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    10. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    11. Lu, Qing-Chang & Xu, Peng-Cheng & Zhang, Jingxiao, 2021. "Infrastructure-based transportation network vulnerability modeling and analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    12. Lu, Qing-Chang, 2018. "Modeling network resilience of rail transit under operational incidents," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 227-237.
    13. Gu, Yu & Chen, Anthony & Xu, Xiangdong, 2023. "Measurement and ranking of important link combinations in the analysis of transportation network vulnerability envelope buffers under multiple-link disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 118-144.
    14. Demirel, Hande & Kompil, Mert & Nemry, Françoise, 2015. "A framework to analyze the vulnerability of European road networks due to Sea-Level Rise (SLR) and sea storm surges," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 62-76.
    15. Gu, Yu & Fu, Xiao & Liu, Zhiyuan & Xu, Xiangdong & Chen, Anthony, 2020. "Performance of transportation network under perturbations: Reliability, vulnerability, and resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    16. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    17. Jenelius, Erik, 2010. "User inequity implications of road network vulnerability," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 2(3), pages 57-73.
    18. Almoghathawi, Yasser & Barker, Kash & Rocco, Claudio M. & Nicholson, Charles D., 2017. "A multi-criteria decision analysis approach for importance identification and ranking of network components," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 142-151.
    19. Rolf Nyberg & Magnus Johansson, 2013. "Indicators of road network vulnerability to storm-felled trees," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 185-199, October.
    20. Bell, Michael G.H. & Kurauchi, Fumitaka & Perera, Supun & Wong, Walter, 2017. "Investigating transport network vulnerability by capacity weighted spectral analysis," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 251-266.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12566-:d:1220197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.