IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i12p9695-d1173077.html
   My bibliography  Save this article

Research on the Yellow River Basin Energy Structure Transformation Path under the “Double Carbon” Goal

Author

Listed:
  • Xiaoxia Liang

    (School of Economics and Management, Taiyuan University of Technology, Taiyuan 030024, China)

  • Yi Shi

    (School of Economics and Management, Taiyuan University of Technology, Taiyuan 030024, China)

  • Yan Li

    (School of Economics and Management, Taiyuan University of Technology, Taiyuan 030024, China)

Abstract

The clean utilization of traditional energy and renewable, clean energy utilization are the key points of the energy structure transition in the Yellow River Basin. This paper constructs an evolutionary game model, with the participation of local governments and energy companies, to analyze the dynamic evolution of each game subject. The results from the study highlight three important facts about the energy mix transformation in the Yellow River Basin: (1) the high ratio of traditional clean energy utilization and the low ratio of renewable, clean energy utilization align with the actual energy use in the Yellow River Basin, which can better promote the inclusive development of both types of energy; (2) increasing the capacity to utilize both energy sources can improve the energy system resilience gains of game players, for example, at the immature stage of renewable, clean energy utilization technologies, local government’s willingness to subsidize renewable clean energy utilization is positively related to their energy system resilience gains; and (3) under the premise of ensuring the energy supply, the introduction of penalty parameters can ensure a reasonable share of both types of energy utilization, and an increase in the penalty parameters makes the game participants increase their willingness to implement energy structure transformation policies.

Suggested Citation

  • Xiaoxia Liang & Yi Shi & Yan Li, 2023. "Research on the Yellow River Basin Energy Structure Transformation Path under the “Double Carbon” Goal," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9695-:d:1173077
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/12/9695/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/12/9695/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maswabi, Mareledi Gina & Chun, Jungwoo & Chung, Suh-Yong, 2021. "Barriers to energy transition: A case of Botswana," Energy Policy, Elsevier, vol. 158(C).
    2. Daniel Friedman, 1998. "On economic applications of evolutionary game theory," Journal of Evolutionary Economics, Springer, vol. 8(1), pages 15-43.
    3. Fan, Ruguo & Dong, Lili, 2018. "The dynamic analysis and simulation of government subsidy strategies in low-carbon diffusion considering the behavior of heterogeneous agents," Energy Policy, Elsevier, vol. 117(C), pages 252-262.
    4. Gardumi, F. & Keppo, I. & Howells, M. & Pye, S. & Avgerinopoulos, G. & Lekavičius, V. & Galinis, A. & Martišauskas, L. & Fahl, U. & Korkmaz, P. & Schmid, D. & Montenegro, R. Cunha & Syri, S. & Hast, A, 2022. "Carrying out a multi-model integrated assessment of European energy transition pathways: Challenges and benefits," Energy, Elsevier, vol. 258(C).
    5. Jinhuang Mao & Qiong Wu & Meihong Zhu & Chengpeng Lu, 2022. "Effects of Environmental Regulation on Green Total Factor Productivity: An Evidence from the Yellow River Basin, China," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    6. Su, Xiang & Tan, Junlan, 2023. "Regional energy transition path and the role of government support and resource endowment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    7. Khan, Irfan & Hou, Fujun & Zakari, Abdulrasheed & Tawiah, Vincent Konadu, 2021. "The dynamic links among energy transitions, energy consumption, and sustainable economic growth: A novel framework for IEA countries," Energy, Elsevier, vol. 222(C).
    8. Kern, Florian & Smith, Adrian, 2008. "Restructuring energy systems for sustainability? Energy transition policy in the Netherlands," Energy Policy, Elsevier, vol. 36(11), pages 4093-4103, November.
    9. Gulagi, Ashish & Ram, Manish & Solomon, A.A. & Khan, Musharof & Breyer, Christian, 2020. "Current energy policies and possible transition scenarios adopting renewable energy: A case study for Bangladesh," Renewable Energy, Elsevier, vol. 155(C), pages 899-920.
    10. Zhang, Shaohe & Shinwari, Riazullah & Zhao, Shikuan & Dagestani, Abd Alwahed, 2023. "Energy transition, geopolitical risk, and natural resources extraction: A novel perspective of energy transition and resources extraction," Resources Policy, Elsevier, vol. 83(C).
    11. Zheng, Shan & Yu, Lianghong, 2022. "The government's subsidy strategy of carbon-sink fishery based on evolutionary game," Energy, Elsevier, vol. 254(PB).
    12. Li, Tianxiao & Liu, Pei & Li, Zheng, 2020. "Quantitative relationship between low-carbon pathways and system transition costs based on a multi-period and multi-regional energy infrastructure planning approach: A case study of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Ahmadi, Somayeh & Saboohi, Yadollah & Vakili, Ali, 2021. "Frameworks, quantitative indicators, characters, and modeling approaches to analysis of energy system resilience: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    14. Liu, Haiying & Khan, Irfan & Zakari, Abdulrasheed & Alharthi, Majed, 2022. "Roles of trilemma in the world energy sector and transition towards sustainable energy: A study of economic growth and the environment," Energy Policy, Elsevier, vol. 170(C).
    15. Kang Zhao & Rui Zhang & Hong Liu & Geyi Wang & Xialing Sun, 2021. "Resource Endowment, Industrial Structure, and Green Development of the Yellow River Basin," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    16. Tian, Jinfang & Yu, Longguang & Xue, Rui & Zhuang, Shan & Shan, Yuli, 2022. "Global low-carbon energy transition in the post-COVID-19 era," Applied Energy, Elsevier, vol. 307(C).
    17. Guo, Yi & Ming, Bo & Huang, Qiang & Wang, Yimin & Zheng, Xudong & Zhang, Wei, 2022. "Risk-averse day-ahead generation scheduling of hydro–wind–photovoltaic complementary systems considering the steady requirement of power delivery," Applied Energy, Elsevier, vol. 309(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongfeng Zhang & Miao Liu & Yixiang Wang & Xiangjiang Ding & Yueting Li, 2023. "Spatio-Temporal Evolution and Action Path of Environmental Governance on Carbon Emissions: A Case Study of Urban Agglomerations in the Yellow River Basin," Sustainability, MDPI, vol. 15(19), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Tao & Jiang, Yulian & Liu, Xingwen, 2023. "Evolutionary game analysis of the impact of dynamic dual credit policy on new energy vehicles after subsidy cancellation," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    2. Badr Eddine Lebrouhi & Eric Schall & Bilal Lamrani & Yassine Chaibi & Tarik Kousksou, 2022. "Energy Transition in France," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    3. liu, Dong & Tian, Yulin & Son, SangBum, 2023. "Do ICT service exports and energy imports determine natural resource sustainability?," Resources Policy, Elsevier, vol. 85(PB).
    4. Xu, Yi & Zhao, Fang, 2023. "Impact of energy depletion, human development, and income distribution on natural resource sustainability," Resources Policy, Elsevier, vol. 83(C).
    5. Keke Sun & Xia Cao & Zeyu Xing, 2021. "Can the Diffusion Modes of Green Technology Affect the Enterprise’s Technology Diffusion Network towards Sustainable Development of Hospitality and Tourism Industry in China?," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    6. Li, Fangyi & Cao, Xin & Ou, Rui, 2021. "A network-based evolutionary analysis of the diffusion of cleaner energy substitution in enterprises: The roles of PEST factors," Energy Policy, Elsevier, vol. 156(C).
    7. Li, Guiping & Zhang, Xiaohua & Xiao, Zheng & Liu, Wei & He, Qian, 2023. "Land under cereal production and environmental sustainability: Influence of total natural resources rents in the United States," Resources Policy, Elsevier, vol. 85(PB).
    8. Haotong Jiang & Liuyang Yao & Xueru Bai & Hua Li, 2023. "Dynamic Analysis and Simulation of the Feasibility and Stability of Innovative Carbon Emission Reduction Projects Entering the Carbon-Trading Market," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
    9. Alfonso Marino & Paolo Pariso & Michele Picariello, 2023. "Energy use and End-use Technologies: Organizational and Energy Analysis in Italian Hospitals," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 36-45, May.
    10. Sun, Tong & Wang, Xuefang, 2023. "Adoption of financial inclusion in a world of depleting natural resources: The importance of information and communication technology in emerging economies," Resources Policy, Elsevier, vol. 85(PB).
    11. Yuan, Jian & Yang, Ranran & Fu, Qiang, 2023. "Aspects of renewable energy influenced by natural resources: How do the stock market and technology play a role?," Resources Policy, Elsevier, vol. 85(PB).
    12. Lei Gao & Zhen-Yu Zhao, 2018. "System Dynamics Analysis of Evolutionary Game Strategies between the Government and Investors Based on New Energy Power Construction Public-Private-Partnership (PPP) Project," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    13. Ying Xie & Jie Wu & Hannian Zhi & Muhammad Riaz & Liangpeng Wu, 2023. "A Study on the Evolution of Competition in China’s Auto Market Considering Market Capacity Constraints and a Game Payoff Matrix: Based on the Dual Credit Policy," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
    14. He, Yixiong & Zhang, Fengxuan & Wang, Yanwei, 2023. "How to facilitate efficient blue carbon trading? A simulation study using the game theory to find the optimal strategy for each participant," Energy, Elsevier, vol. 276(C).
    15. Xin-gang Zhao & Yu-zhuo Zhang, 2018. "The System Dynamics (SD) Analysis of the Government and Power Producers’ Evolutionary Game Strategies Based on Carbon Trading (CT) Mechanism: A Case of China," Sustainability, MDPI, vol. 10(4), pages 1-18, April.
    16. Khan, Irfan & Zakari, Abdulrasheed & Dagar, Vishal & Singh, Sanjeet, 2022. "World energy trilemma and transformative energy developments as determinants of economic growth amid environmental sustainability," Energy Economics, Elsevier, vol. 108(C).
    17. Badr Eddine Lebrouhi & Éric Schall & Bilal Lamrani & Yassine Chaibi & Tarik Kousksou, 2022. "Energy Transition in France," Post-Print hal-03716839, HAL.
    18. Xingyi Yang & Xiaopei Dai & Zhenyu Liu, 2023. "Retailers’ Audit Strategies for Green Agriculture Based on Dynamic Evolutionary Game," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    19. Zhao, Fang & Xu, Yi & Ma, Wanying, 2023. "Geodiversity and natural resource management: The importance of combustible renewables and waste in China," Resources Policy, Elsevier, vol. 85(PB).
    20. Ayomikun Bello & Anastasia Ivanova & Alexey Cheremisin, 2023. "A Comprehensive Review of the Role of CO 2 Foam EOR in the Reduction of Carbon Footprint in the Petroleum Industry," Energies, MDPI, vol. 16(3), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9695-:d:1173077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.