IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i2p993-d726232.html
   My bibliography  Save this article

Recovery of Degraded Areas through Technosols and Mineral Nanoparticles: A Review

Author

Listed:
  • Janaína Oliveira Gonçalves

    (Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, Barranquilla 080002, Colombia)

  • Carolina Moreno Fruto

    (Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, Barranquilla 080002, Colombia)

  • Mauricio Jaraba Barranco

    (Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, Barranquilla 080002, Colombia)

  • Marcos Leandro Silva Oliveira

    (Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, Barranquilla 080002, Colombia)

  • Claudete Gindri Ramos

    (Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, Barranquilla 080002, Colombia)

Abstract

Anthropogenic sources such as urban and agricultural runoff, fossil fuel combustion, domestic and industrial wastewater effluents, and atmospheric deposition generate large volumes of nutrient-rich organic and inorganic waste. In their original state under subsurface conditions, they can be inert and thermodynamically stable, although when some of their components are exposed to surface conditions, they undergo great physicochemical and mineralogical transformations, thereby mobilizing their constituents, which often end up contaminating the environment. These residues can be used in the production of technosols as agricultural inputs and the recovery of degraded areas. Technosol is defined as artificial soil made from organic and inorganic waste, capable of performing environmental and productive functions in a similar way to natural ones. This study presents results of international research on the use of technosol to increase soil fertility levels and recover degraded areas in some countries. The conclusions of the various studies served to expand the field of applicability of this line of research on technosols in contaminated spaces. The review indicated very promising results that support the sustainability of our ecosystem, and the improvement achieved with this procedure in soils is comparable to the hybridization and selection of plants that agriculture has performed for centuries to obtain better harvests. Thus, the use of a technosol presupposes a much faster recovery without the need for any other type of intervention.

Suggested Citation

  • Janaína Oliveira Gonçalves & Carolina Moreno Fruto & Mauricio Jaraba Barranco & Marcos Leandro Silva Oliveira & Claudete Gindri Ramos, 2022. "Recovery of Degraded Areas through Technosols and Mineral Nanoparticles: A Review," Sustainability, MDPI, vol. 14(2), pages 1-13, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:993-:d:726232
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/2/993/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/2/993/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chofreh, Abdoulmohammad Gholamzadeh & Goni, Feybi Ariani & Klemeš, Jiří Jaromír & Seyed Moosavi, Seyed Mohsen & Davoudi, Mehdi & Zeinalnezhad, Masoomeh, 2021. "Covid-19 shock: Development of strategic management framework for global energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    2. Hoang, Anh Tuan & Sandro Nižetić, & Olcer, Aykut I. & Ong, Hwai Chyuan & Chen, Wei-Hsin & Chong, Cheng Tung & Thomas, Sabu & Bandh, Suhaib A. & Nguyen, Xuan Phuong, 2021. "Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy: Opportunities, challenges, and policy implications," Energy Policy, Elsevier, vol. 154(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michał Kozłowski & Krzysztof Otremba & Marek Pająk & Marcin Pietrzykowski, 2023. "Changes in Physical and Water Retention Properties of Technosols by Agricultural Reclamation with Wheat–Rapeseed Rotation in a Post-Mining Area of Central Poland," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    2. Luis F. O. Silva & Hongya Niu, 2022. "Editorial: Nano- and Micro-Contaminants and Their Effect on the Humans and Environment," Sustainability, MDPI, vol. 14(10), pages 1-5, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minh-Tai Le & Nhat-Luong Nhieu, 2022. "A Novel Multi-Criteria Assessment Approach for Post-COVID-19 Production Strategies in Vietnam Manufacturing Industry: OPA–Fuzzy EDAS Model," Sustainability, MDPI, vol. 14(8), pages 1-25, April.
    2. Larisa Gorina & Marina Gordova & Irina Khristoforova & Lyudmila Sundeeva & Wadim Strielkowski, 2023. "Sustainable Education and Digitalization through the Prism of the COVID-19 Pandemic," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    3. Bi-Huei Tsai & Yao-Min Huang, 2023. "Comparing the Substitution of Nuclear Energy or Renewable Energy for Fossil Fuels between the United States and Africa," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    4. Eleftherios Thalassinos & Marta Kadłubek & Le Minh Thong & Tran Van Hiep & Erginbay Ugurlu, 2022. "Managerial Issues Regarding the Role of Natural Gas in the Transition of Energy and the Impact of Natural Gas Consumption on the GDP of Selected Countries," Resources, MDPI, vol. 11(5), pages 1-22, April.
    5. Sumarno, Theresia B. & Sihotang, Parulian & Prawiraatmadja, Widhyawan, 2022. "Exploring Indonesia's energy policy failures through the JUST framework," Energy Policy, Elsevier, vol. 164(C).
    6. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    7. Ling Pan & Zeshui Xu & Marinko Skare, 2023. "Sustainable business model innovation literature: a bibliometrics analysis," Review of Managerial Science, Springer, vol. 17(3), pages 757-785, April.
    8. Cassetti, Gabriele & Boitier, Baptiste & Elia, Alessia & Le Mouël, Pierre & Gargiulo, Maurizio & Zagamé, Paul & Nikas, Alexandros & Koasidis, Konstantinos & Doukas, Haris & Chiodi, Alessandro, 2023. "The interplay among COVID-19 economic recovery, behavioural changes, and the European Green Deal: An energy-economic modelling perspective," Energy, Elsevier, vol. 263(PC).
    9. Ekinci, Esra & Mangla, Sachin Kumar & Kazancoglu, Yigit & Sarma, P.R.S. & Sezer, Muruvvet Deniz & Ozbiltekin-Pala, Melisa, 2022. "Resilience and complexity measurement for energy efficient global supply chains in disruptive events," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    10. Piotr Raźniak & Sławomir Dorocki & Tomasz Rachwał & Anna Winiarczyk-Raźniak, 2021. "The Role of the Energy Sector in the Command and Control Function of Cities in Conditions of Sustainability Transitions," Energies, MDPI, vol. 14(22), pages 1-14, November.
    11. Piotr Bórawski & Aneta Bełdycka-Bórawska & Lisa Holden & Tomasz Rokicki, 2022. "The Role of Renewable Energy Sources in Electricity Production in Poland and the Background of Energy Policy of the European Union at the Beginning of the COVID-19 Crisis," Energies, MDPI, vol. 15(22), pages 1-17, November.
    12. Yingfeng Zhu, 2023. "Industry Stakeholders Perspectives on Assessing the Effect of Government Policy on Renewable Energy Investment in China," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 563-573, July.
    13. Alexey Cherepovitsyn & Evgeniya Rutenko, 2022. "Strategic Planning of Oil and Gas Companies: The Decarbonization Transition," Energies, MDPI, vol. 15(17), pages 1-26, August.
    14. Ayyildiz, Ertugrul, 2022. "Fermatean fuzzy step-wise Weight Assessment Ratio Analysis (SWARA) and its application to prioritizing indicators to achieve sustainable development goal-7," Renewable Energy, Elsevier, vol. 193(C), pages 136-148.
    15. Indre Siksnelyte-Butkiene, 2021. "Impact of the COVID-19 Pandemic to the Sustainability of the Energy Sector," Sustainability, MDPI, vol. 13(23), pages 1-19, November.
    16. Biswas, Shreya & Das, Upasak, 2022. "Adding fuel to human capital: Exploring the educational effects of cooking fuel choice from rural India," Energy Economics, Elsevier, vol. 105(C).
    17. Xuan Phuong Nguyen & Dinh Tuyen Nguyen & Van Viet Pham & Dinh Tung Vo, 2022. "Highlights Of Oil Treatment Technologies And Rise Of Oil-Absorbing Materials In Ocean Cleaning Strategy," Water Conservation & Management (WCM), Zibeline International Publishing, vol. 6(1), pages 06-14, January.
    18. Lala Hamidova & Arzuman Huseynov & Elnara Samedova, 2022. "Challenges in Implementing Renewable Energy Sources in Azerbaijan," International Journal of Energy Economics and Policy, Econjournals, vol. 12(6), pages 441-446, November.
    19. Yasir Basheer & Asad Waqar & Saeed Mian Qaisar & Toqeer Ahmed & Nasim Ullah & Sattam Alotaibi, 2022. "Analyzing the Prospect of Hybrid Energy in the Cement Industry of Pakistan, Using HOMER Pro," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    20. Alexey Cherepovitsyn & Victoria Solovyova, 2022. "Prospects for the Development of the Russian Rare-Earth Metal Industry in View of the Global Energy Transition—A Review," Energies, MDPI, vol. 15(1), pages 1-24, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:993-:d:726232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.