IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p13975-d954930.html
   My bibliography  Save this article

The Spatial Disequilibrium and Dynamic Evolution of the Net Agriculture Carbon Effect in China

Author

Listed:
  • Jie Huang

    (School of Business, Xinyang Normal University, Xinyang 464000, China)

  • Zimin Sun

    (School of Business, Xinyang Normal University, Xinyang 464000, China)

  • Pengshu Zhong

    (School of Business, Xinyang Normal University, Xinyang 464000, China)

Abstract

Considering the comparative perspective of the net agricultural carbon effect in China’s three major functional grain production areas, the Dagum Gini coefficient, kernel density estimation and Markov chain analysis are used to investigate the spatial disequilibrium and dynamic evolution characteristics of the net agricultural carbon effect in China from 2000 to 2019. The results show that the overall net agricultural carbon sink in China is on a fluctuating upward trend, and the net agricultural carbon sink in the main production areas is higher than that in main marketing areas and balanced production and marketing areas. There are obvious differences in the net agricultural carbon sink between different areas, and the differences are expanding; inter-regional differences are the most significant, with the contribution of intra-regional differences second and the contribution of intensity of transvariation the least. The kernel density curve shows that the absolute differences are increasing and that there are gradients and multipolar differentiation within the area. The Markov transfer matrix reflects that the net agricultural carbon effect in China is highly volatile and has a strong internal mobility. The probability of upward shift in an area increases when it is adjacent to a high-level area, and the net carbon effect of agriculture in high-level areas has a strong stability. Based on this, each area should build on its own comparative advantages and explore targeted pathways to reducing emissions and increasing sinks in agriculture while strengthening inter-regional communication and cooperation. It is necessary to build a synergistic mechanism to enhance the net carbon effect of agriculture, which will ultimately help to achieve the “double carbon” target.

Suggested Citation

  • Jie Huang & Zimin Sun & Pengshu Zhong, 2022. "The Spatial Disequilibrium and Dynamic Evolution of the Net Agriculture Carbon Effect in China," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13975-:d:954930
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/13975/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/13975/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jing Wang & Liang Feng & Paul I. Palmer & Yi Liu & Shuangxi Fang & Hartmut Bösch & Christopher W. O’Dell & Xiaoping Tang & Dongxu Yang & Lixin Liu & ChaoZong Xia, 2020. "Large Chinese land carbon sink estimated from atmospheric carbon dioxide data," Nature, Nature, vol. 586(7831), pages 720-723, October.
    2. Jing Wang & Liang Feng & Paul I. Palmer & Yi Liu & Shuangxi Fang & Hartmut Bösch & Christopher W. O’Dell & Xiaoping Tang & Dongxu Yang & Lixin Liu & ChaoZong Xia, 2020. "Publisher Correction: Large Chinese land carbon sink estimated from atmospheric carbon dioxide data," Nature, Nature, vol. 588(7837), pages 19-19, December.
    3. Antle, John M. & Stoorvogel, Jetse J., 2008. "Agricultural carbon sequestration, poverty, and sustainability," Environment and Development Economics, Cambridge University Press, vol. 13(3), pages 327-352, June.
    4. Shepero, Mahmoud & Munkhammar, Joakim, 2018. "Spatial Markov chain model for electric vehicle charging in cities using geographical information system (GIS) data," Applied Energy, Elsevier, vol. 231(C), pages 1089-1099.
    5. Jianli Sui & Wenqiang Lv, 2021. "Crop Production and Agricultural Carbon Emissions: Relationship Diagnosis and Decomposition Analysis," IJERPH, MDPI, vol. 18(15), pages 1-18, August.
    6. Robert W. R. Parker & Julia L. Blanchard & Caleb Gardner & Bridget S. Green & Klaas Hartmann & Peter H. Tyedmers & Reg A. Watson, 2018. "Fuel use and greenhouse gas emissions of world fisheries," Nature Climate Change, Nature, vol. 8(4), pages 333-337, April.
    7. Yujie Huang & Yang Su & Ruiliang Li & Haiqing He & Haiyan Liu & Feng Li & Qin Shu, 2019. "Study of the Spatio-Temporal Differentiation of Factors Influencing Carbon Emission of the Planting Industry in Arid and Vulnerable Areas in Northwest China," IJERPH, MDPI, vol. 17(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Liu & Mengyuan Du & Hongjun Lei & Hongwei Pan & Chongju Shang & Kai Feng & Wenbo Wang, 2023. "Distribution Characteristics of Drought Resistance and Disaster Reduction Capability and the Identification of Key Factors—A Case Study of a Typical Area in the Yun–Gui Plateau, China," Sustainability, MDPI, vol. 15(20), pages 1-18, October.
    2. Ying Wang & Juan Yang & Caiquan Duan, 2023. "Research on the Spatial-Temporal Patterns of Carbon Effects and Carbon-Emission Reduction Strategies for Farmland in China," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    3. Dahao Guo & Yuancheng Lin & Min Wang & Zirou Huang, 2023. "Spatial Distribution Pattern, Evolution and Influencing Mechanism of Ecological Farms in China," Land, MDPI, vol. 12(7), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luyi Qiu & Kunying Niu & Wei He & Yaqi Hu, 2023. "Two Contribution Paths of Carbon Neutrality: Terrestrial Ecosystem Carbon Sinks and Anthropogenic Carbon Emission Reduction—A Case of Chongqing, China," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    2. Shiliang Liu & Yuhong Dong & Hua Liu & Fangfang Wang & Lu Yu, 2023. "Review of Valuation of Forest Ecosystem Services and Realization Approaches in China," Land, MDPI, vol. 12(5), pages 1-16, May.
    3. Liu, Shilei & Xia, Jun, 2021. "Forest harvesting restriction and forest restoration in China," Forest Policy and Economics, Elsevier, vol. 129(C).
    4. Pan, Xunzhang & Ma, Xueqing & Zhang, Yanru & Shao, Tianming & Peng, Tianduo & Li, Xiang & Wang, Lining & Chen, Wenying, 2023. "Implications of carbon neutrality for power sector investments and stranded coal assets in China," Energy Economics, Elsevier, vol. 121(C).
    5. Zhang, Qian & Cheng, Baodong & Diao, Gang & Tao, Chenlu & Wang, Can, 2023. "Does China's natural forest logging ban affect the stability of the timber import trade network?," Forest Policy and Economics, Elsevier, vol. 152(C).
    6. Longhui Li & Yue Zhang & Tianjun Zhou & Kaicun Wang & Can Wang & Tao Wang & Linwang Yuan & Kangxin An & Chenghu Zhou & Guonian Lü, 2022. "Mitigation of China’s carbon neutrality to global warming," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Jiang, Jiatong & Hu, Bin & Wang, R.Z. & Deng, Na & Cao, Feng & Wang, Chi-Chuan, 2022. "A review and perspective on industry high-temperature heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Mengcheng Li & Haimeng Liu & Shangkun Yu & Jianshi Wang & Yi Miao & Chengxin Wang, 2022. "Estimating the Decoupling between Net Carbon Emissions and Construction Land and Its Driving Factors: Evidence from Shandong Province, China," IJERPH, MDPI, vol. 19(15), pages 1-26, July.
    9. Hui Wen & Yi Li & Zirong Li & Xiaoxue Cai & Fengxia Wang, 2022. "Spatial Differentiation of Carbon Budgets and Carbon Balance Zoning in China Based on the Land Use Perspective," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    10. Shenghang Wang & Shen Tan & Jiaming Xu, 2023. "Evaluation and Implication of the Policies towards China’s Carbon Neutrality," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    11. Ogwu Stephen Obinozie & Eze Afamefuna A. & Uzoigwe Joshua C. & Orji Anthony & Maduka Anne Chinonye & Onwe Joshua Chukwuma, 2023. "Global Warming and Atmospheric Carbon: Is Carbon Sequestration a Myth or Reality?," Studia Universitatis „Vasile Goldis” Arad – Economics Series, Sciendo, vol. 33(1), pages 28-56, March.
    12. Dongwei Liu & Shanlong Li & Weixing Zhu & Yongyang Wang & Shasha Zhang & Yunting Fang, 2023. "Storage and Stability of Soil Organic Carbon in Two Temperate Forests in Northeastern China," Land, MDPI, vol. 12(5), pages 1-14, May.
    13. Shiguang Shen & Chengcheng Wu & Zhenyu Gai & Chenjing Fan, 2023. "Analysis of the Spatiotemporal Evolution of the Net Carbon Sink Efficiency and Its Influencing Factors at the City Level in Three Major Urban Agglomerations in China," IJERPH, MDPI, vol. 20(2), pages 1-18, January.
    14. Bing Wang & Xiang Niu & Tingyu Xu, 2023. "Identifying the Full Carbon Sink of Forest Vegetation: A Case Study in the Three Northeast Provinces of China," Sustainability, MDPI, vol. 15(13), pages 1-13, June.
    15. Hongjie Sun & Benzheng Zhu & Qingqing Cao, 2023. "Future Dietary Transformation and Its Impacts on the Environment in China," Sustainability, MDPI, vol. 15(17), pages 1-14, August.
    16. Mengting Dong & Zeyuan Liu & Xiufeng Ni & Zhulin Qi & Jinnan Wang & Qingyu Zhang, 2023. "Re-Evaluating the Value of Ecosystem Based on Carbon Benefit: A Case Study in Chengdu, China," Land, MDPI, vol. 12(8), pages 1-16, August.
    17. Ding, Tao & Li, Hao & Tan, Ruipeng & Zhao, Xin, 2023. "How does geopolitical risk affect carbon emissions?: An empirical study from the perspective of mineral resources extraction in OECD countries," Resources Policy, Elsevier, vol. 85(PB).
    18. Kai Liu & Ziyi Ni & Mei Ren & Xiaoqing Zhang, 2022. "Spatial Differences and Influential Factors of Urban Carbon Emissions in China under the Target of Carbon Neutrality," IJERPH, MDPI, vol. 19(11), pages 1-14, May.
    19. Zhongfu Tan & Jiacheng Yang & Fanqi Li & Haochen Zhao & Xudong Li, 2022. "Cooperative Operation Model of Wind Turbine and Carbon Capture Power Plant Considering Benefit Distribution," Sustainability, MDPI, vol. 14(18), pages 1-21, September.
    20. Xingfan Pu & Jian Yao & Rongyue Zheng, 2022. "Forecast of Energy Consumption and Carbon Emissions in China’s Building Sector to 2060," Energies, MDPI, vol. 15(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13975-:d:954930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.