IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11627-d916475.html
   My bibliography  Save this article

Cooperative Operation Model of Wind Turbine and Carbon Capture Power Plant Considering Benefit Distribution

Author

Listed:
  • Zhongfu Tan

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Jiacheng Yang

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Fanqi Li

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Haochen Zhao

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Xudong Li

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

Abstract

Increasing systematic carbon sinks and clean energy generation proportion are the main ways to reduce the carbon emission of power system. In order to promote wind power accommodation and reduce system carbon emissions, a cooperative operation model of wind turbine and carbon capture power plant (CCPP) is constructed. Then, the model is equivalently transformed into two sub-problems. One is the operation optimization sub-problem of cooperative alliance with the goal of maximizing the alliance benefit. The other is the benefit distribution sub-problem with the goal of fair distributing cooperative benefit. To protect participants’ privacy, the alternating direction method of multipliers (ADMM) is used to realize the distributed solution of the two sub-problems. Finally, the effectiveness of the proposed model is verified by an example, and the sensitivity analysis of the alliance benefit and system carbon emission is carried out with carbon price and carbon capture cost as the sensitivity factors. The example results show that: (1) By providing up and down regulation services to wind turbines, CCPP can obtain ancillary service income and help to reduce the declaration deviation of wind turbines, which can realize multi-win-win situation. (2) Carbon price affects both thermal power units and carbon capture equipment. So, compared with carbon costs, the carbon emissions and the alliance benefit are both more sensitive to carbon price. The model of the paper is constructed under the deviation punishment mechanism, and subsequent research can be expanded in combination with a more detailed imbalance settlement mechanism.

Suggested Citation

  • Zhongfu Tan & Jiacheng Yang & Fanqi Li & Haochen Zhao & Xudong Li, 2022. "Cooperative Operation Model of Wind Turbine and Carbon Capture Power Plant Considering Benefit Distribution," Sustainability, MDPI, vol. 14(18), pages 1-21, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11627-:d:916475
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11627/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11627/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jing Wang & Liang Feng & Paul I. Palmer & Yi Liu & Shuangxi Fang & Hartmut Bösch & Christopher W. O’Dell & Xiaoping Tang & Dongxu Yang & Lixin Liu & ChaoZong Xia, 2020. "Large Chinese land carbon sink estimated from atmospheric carbon dioxide data," Nature, Nature, vol. 586(7831), pages 720-723, October.
    2. Jing Wang & Liang Feng & Paul I. Palmer & Yi Liu & Shuangxi Fang & Hartmut Bösch & Christopher W. O’Dell & Xiaoping Tang & Dongxu Yang & Lixin Liu & ChaoZong Xia, 2020. "Publisher Correction: Large Chinese land carbon sink estimated from atmospheric carbon dioxide data," Nature, Nature, vol. 588(7837), pages 19-19, December.
    3. Wu, Xiao & Wang, Meihong & Liao, Peizhi & Shen, Jiong & Li, Yiguo, 2020. "Solvent-based post-combustion CO2 capture for power plants: A critical review and perspective on dynamic modelling, system identification, process control and flexible operation," Applied Energy, Elsevier, vol. 257(C).
    4. He, Liangce & Lu, Zhigang & Zhang, Jiangfeng & Geng, Lijun & Zhao, Hao & Li, Xueping, 2018. "Low-carbon economic dispatch for electricity and natural gas systems considering carbon capture systems and power-to-gas," Applied Energy, Elsevier, vol. 224(C), pages 357-370.
    5. Poplavskaya, Ksenia & Lago, Jesus & de Vries, Laurens, 2020. "Effect of market design on strategic bidding behavior: Model-based analysis of European electricity balancing markets," Applied Energy, Elsevier, vol. 270(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Shilei & Xia, Jun, 2021. "Forest harvesting restriction and forest restoration in China," Forest Policy and Economics, Elsevier, vol. 129(C).
    2. Bishan Wu, 2024. "Low-carbon development mechanism of energy industry from the perspective of carbon neutralization," Energy & Environment, , vol. 35(2), pages 628-643, March.
    3. Zhang, Hongji & Ding, Tao & Sun, Yuge & Huang, Yuhan & He, Yuankang & Huang, Can & Li, Fangxing & Xue, Chen & Sun, Xiaoqiang, 2023. "How does load-side re-electrification help carbon neutrality in energy systems: Cost competitiveness analysis and life-cycle deduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    4. Zhang, Qian & Cheng, Baodong & Diao, Gang & Tao, Chenlu & Wang, Can, 2023. "Does China's natural forest logging ban affect the stability of the timber import trade network?," Forest Policy and Economics, Elsevier, vol. 152(C).
    5. Longhui Li & Yue Zhang & Tianjun Zhou & Kaicun Wang & Can Wang & Tao Wang & Linwang Yuan & Kangxin An & Chenghu Zhou & Guonian Lü, 2022. "Mitigation of China’s carbon neutrality to global warming," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. Mengcheng Li & Haimeng Liu & Shangkun Yu & Jianshi Wang & Yi Miao & Chengxin Wang, 2022. "Estimating the Decoupling between Net Carbon Emissions and Construction Land and Its Driving Factors: Evidence from Shandong Province, China," IJERPH, MDPI, vol. 19(15), pages 1-26, July.
    7. Hui Wen & Yi Li & Zirong Li & Xiaoxue Cai & Fengxia Wang, 2022. "Spatial Differentiation of Carbon Budgets and Carbon Balance Zoning in China Based on the Land Use Perspective," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    8. Ogwu Stephen Obinozie & Eze Afamefuna A. & Uzoigwe Joshua C. & Orji Anthony & Maduka Anne Chinonye & Onwe Joshua Chukwuma, 2023. "Global Warming and Atmospheric Carbon: Is Carbon Sequestration a Myth or Reality?," Studia Universitatis „Vasile Goldis” Arad – Economics Series, Sciendo, vol. 33(1), pages 28-56, March.
    9. Shiguang Shen & Chengcheng Wu & Zhenyu Gai & Chenjing Fan, 2023. "Analysis of the Spatiotemporal Evolution of the Net Carbon Sink Efficiency and Its Influencing Factors at the City Level in Three Major Urban Agglomerations in China," IJERPH, MDPI, vol. 20(2), pages 1-18, January.
    10. Mengting Dong & Zeyuan Liu & Xiufeng Ni & Zhulin Qi & Jinnan Wang & Qingyu Zhang, 2023. "Re-Evaluating the Value of Ecosystem Based on Carbon Benefit: A Case Study in Chengdu, China," Land, MDPI, vol. 12(8), pages 1-16, August.
    11. Ding, Tao & Li, Hao & Tan, Ruipeng & Zhao, Xin, 2023. "How does geopolitical risk affect carbon emissions?: An empirical study from the perspective of mineral resources extraction in OECD countries," Resources Policy, Elsevier, vol. 85(PB).
    12. Kai Liu & Ziyi Ni & Mei Ren & Xiaoqing Zhang, 2022. "Spatial Differences and Influential Factors of Urban Carbon Emissions in China under the Target of Carbon Neutrality," IJERPH, MDPI, vol. 19(11), pages 1-14, May.
    13. Duan Huang & Lijie Xu & Shilin Zou & Bo Liu & Hengkai Li & Luoman Pu & Hong Chi, 2024. "Mapping Paddy Rice in Rice–Wetland Coexistence Zone by Integrating Sentinel-1 and Sentinel-2 Data," Agriculture, MDPI, vol. 14(3), pages 1-20, February.
    14. Qingqing Li & Yueru Zhu & Zunling Zhu, 2022. "Calculation and Optimization of the Carbon Sink Benefits of Green Space Plants in Residential Areas: A Case Study of Suojin Village in Nanjing," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    15. Mingxu Liu & Fang Shang & Xingjie Lu & Xin Huang & Yu Song & Bing Liu & Qiang Zhang & Xuejun Liu & Junji Cao & Tingting Xu & Tiantian Wang & Zhenying Xu & Wen Xu & Wenling Liao & Ling Kang & Xuhui Cai, 2022. "Unexpected response of nitrogen deposition to nitrogen oxide controls and implications for land carbon sink," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Junyi Liu & Zhixiang Wu & Siqi Yang & Chuan Yang, 2022. "Sensitivity Analysis of Biome-BGC for Gross Primary Production of a Rubber Plantation Ecosystem: A Case Study of Hainan Island, China," IJERPH, MDPI, vol. 19(21), pages 1-13, October.
    17. Yanling Jin & Yi Xu & Rui Li & Changping Zhao & Zhenghui Yuan, 2022. "Comprehensive Evaluation of China’s Input–Output Sector Status Based on the Entropy Weight-Social Network Analysis Method," Sustainability, MDPI, vol. 14(21), pages 1-25, November.
    18. Zhen Yu & Philippe Ciais & Shilong Piao & Richard A. Houghton & Chaoqun Lu & Hanqin Tian & Evgenios Agathokleous & Giri Raj Kattel & Stephen Sitch & Daniel Goll & Xu Yue & Anthony Walker & Pierre Frie, 2022. "Forest expansion dominates China’s land carbon sink since 1980," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Chaochao Du & Xiaoyong Bai & Yangbing Li & Qiu Tan & Cuiwei Zhao & Guangjie Luo & Luhua Wu & Fei Chen & Chaojun Li & Chen Ran & Xuling Luo & Huipeng Xi & Huan Chen & Sirui Zhang & Min Liu & Suhua Gong, 2022. "Inventory of China’s Net Biome Productivity since the 21st Century," Land, MDPI, vol. 11(8), pages 1-16, August.
    20. Lin Wang & Junsan Zhao & Fengxia Li & Guoping Chen, 2023. "Spatial Coupling of Carbon Sink Capacity with High-Quality Development Based on Exploitation and Protection Pattern," Sustainability, MDPI, vol. 15(10), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11627-:d:916475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.