IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10396-d1184735.html
   My bibliography  Save this article

Identifying the Full Carbon Sink of Forest Vegetation: A Case Study in the Three Northeast Provinces of China

Author

Listed:
  • Bing Wang

    (Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
    Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Beijing 100091, China
    Dagangshan National Key Field Observation and Research Station for Forest Ecosystem, Xinyu 338033, China)

  • Xiang Niu

    (Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
    Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Beijing 100091, China
    Dagangshan National Key Field Observation and Research Station for Forest Ecosystem, Xinyu 338033, China)

  • Tingyu Xu

    (Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
    Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Beijing 100091, China
    Dagangshan National Key Field Observation and Research Station for Forest Ecosystem, Xinyu 338033, China)

Abstract

Accurate analysis of the carbon sink capacity of forest vegetation is particularly important for achieving China’s carbon neutral strategy. In this study, we put forward the concept of the full carbon sink, which includes the sink capacity of forest components carbon sink tree arbors and bushes, sparse forest land, unclosed forest land, other shrubs, nursery, barren mountain shrubs, urban and rural green areas surrounding trees and scattered forests, and forest soil. The plot measurement method was used based on the forest resource inventory data and the plot data of the China Forest Ecosystem Research Network to accurately estimate the full carbon sequestration of forest vegetation in the Three Northeastern Provinces. The results showed that the full carbon sink is 69.45 TgC yr −1 , which is equivalent to neutralizing 22% of carbon emissions from energy consumption. Among the three provinces, the vegetation of Heilongjiang Province was the largest carbon sink, accounting for 63% of the total. Regarding the contribution of each component to the full carbon sink, tree arbors accounted for 78%, followed by other forest vegetation at 13%, then soil at 9%. Crop output was the main factor influencing the spatial pattern of the full carbon sink. The full carbon sink of forest vegetation can objectively reflect the important role of forestry in achieving the carbon neutrality strategy.

Suggested Citation

  • Bing Wang & Xiang Niu & Tingyu Xu, 2023. "Identifying the Full Carbon Sink of Forest Vegetation: A Case Study in the Three Northeast Provinces of China," Sustainability, MDPI, vol. 15(13), pages 1-13, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10396-:d:1184735
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10396/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10396/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jing Wang & Liang Feng & Paul I. Palmer & Yi Liu & Shuangxi Fang & Hartmut Bösch & Christopher W. O’Dell & Xiaoping Tang & Dongxu Yang & Lixin Liu & ChaoZong Xia, 2020. "Large Chinese land carbon sink estimated from atmospheric carbon dioxide data," Nature, Nature, vol. 586(7831), pages 720-723, October.
    2. Jing Wang & Liang Feng & Paul I. Palmer & Yi Liu & Shuangxi Fang & Hartmut Bösch & Christopher W. O’Dell & Xiaoping Tang & Dongxu Yang & Lixin Liu & ChaoZong Xia, 2020. "Publisher Correction: Large Chinese land carbon sink estimated from atmospheric carbon dioxide data," Nature, Nature, vol. 588(7837), pages 19-19, December.
    3. Hongpeng Guo & Sidong Xie & Chulin Pan, 2021. "The Impact of Planting Industry Structural Changes on Carbon Emissions in the Three Northeast Provinces of China," IJERPH, MDPI, vol. 18(2), pages 1-20, January.
    4. Nancy L. Harris & David A. Gibbs & Alessandro Baccini & Richard A. Birdsey & Sytze Bruin & Mary Farina & Lola Fatoyinbo & Matthew C. Hansen & Martin Herold & Richard A. Houghton & Peter V. Potapov & D, 2021. "Global maps of twenty-first century forest carbon fluxes," Nature Climate Change, Nature, vol. 11(3), pages 234-240, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kai Liu & Ziyi Ni & Mei Ren & Xiaoqing Zhang, 2022. "Spatial Differences and Influential Factors of Urban Carbon Emissions in China under the Target of Carbon Neutrality," IJERPH, MDPI, vol. 19(11), pages 1-14, May.
    2. Liu, Shilei & Xia, Jun, 2021. "Forest harvesting restriction and forest restoration in China," Forest Policy and Economics, Elsevier, vol. 129(C).
    3. Bishan Wu, 2024. "Low-carbon development mechanism of energy industry from the perspective of carbon neutralization," Energy & Environment, , vol. 35(2), pages 628-643, March.
    4. Zhang, Qian & Cheng, Baodong & Diao, Gang & Tao, Chenlu & Wang, Can, 2023. "Does China's natural forest logging ban affect the stability of the timber import trade network?," Forest Policy and Economics, Elsevier, vol. 152(C).
    5. Longhui Li & Yue Zhang & Tianjun Zhou & Kaicun Wang & Can Wang & Tao Wang & Linwang Yuan & Kangxin An & Chenghu Zhou & Guonian Lü, 2022. "Mitigation of China’s carbon neutrality to global warming," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. Mengcheng Li & Haimeng Liu & Shangkun Yu & Jianshi Wang & Yi Miao & Chengxin Wang, 2022. "Estimating the Decoupling between Net Carbon Emissions and Construction Land and Its Driving Factors: Evidence from Shandong Province, China," IJERPH, MDPI, vol. 19(15), pages 1-26, July.
    7. Hui Wen & Yi Li & Zirong Li & Xiaoxue Cai & Fengxia Wang, 2022. "Spatial Differentiation of Carbon Budgets and Carbon Balance Zoning in China Based on the Land Use Perspective," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    8. Ogwu Stephen Obinozie & Eze Afamefuna A. & Uzoigwe Joshua C. & Orji Anthony & Maduka Anne Chinonye & Onwe Joshua Chukwuma, 2023. "Global Warming and Atmospheric Carbon: Is Carbon Sequestration a Myth or Reality?," Studia Universitatis „Vasile Goldis” Arad – Economics Series, Sciendo, vol. 33(1), pages 28-56, March.
    9. Shiguang Shen & Chengcheng Wu & Zhenyu Gai & Chenjing Fan, 2023. "Analysis of the Spatiotemporal Evolution of the Net Carbon Sink Efficiency and Its Influencing Factors at the City Level in Three Major Urban Agglomerations in China," IJERPH, MDPI, vol. 20(2), pages 1-18, January.
    10. Mengting Dong & Zeyuan Liu & Xiufeng Ni & Zhulin Qi & Jinnan Wang & Qingyu Zhang, 2023. "Re-Evaluating the Value of Ecosystem Based on Carbon Benefit: A Case Study in Chengdu, China," Land, MDPI, vol. 12(8), pages 1-16, August.
    11. Ding, Tao & Li, Hao & Tan, Ruipeng & Zhao, Xin, 2023. "How does geopolitical risk affect carbon emissions?: An empirical study from the perspective of mineral resources extraction in OECD countries," Resources Policy, Elsevier, vol. 85(PB).
    12. Duan Huang & Lijie Xu & Shilin Zou & Bo Liu & Hengkai Li & Luoman Pu & Hong Chi, 2024. "Mapping Paddy Rice in Rice–Wetland Coexistence Zone by Integrating Sentinel-1 and Sentinel-2 Data," Agriculture, MDPI, vol. 14(3), pages 1-20, February.
    13. Qingqing Li & Yueru Zhu & Zunling Zhu, 2022. "Calculation and Optimization of the Carbon Sink Benefits of Green Space Plants in Residential Areas: A Case Study of Suojin Village in Nanjing," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    14. Mingxu Liu & Fang Shang & Xingjie Lu & Xin Huang & Yu Song & Bing Liu & Qiang Zhang & Xuejun Liu & Junji Cao & Tingting Xu & Tiantian Wang & Zhenying Xu & Wen Xu & Wenling Liao & Ling Kang & Xuhui Cai, 2022. "Unexpected response of nitrogen deposition to nitrogen oxide controls and implications for land carbon sink," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Junyi Liu & Zhixiang Wu & Siqi Yang & Chuan Yang, 2022. "Sensitivity Analysis of Biome-BGC for Gross Primary Production of a Rubber Plantation Ecosystem: A Case Study of Hainan Island, China," IJERPH, MDPI, vol. 19(21), pages 1-13, October.
    16. Yanling Jin & Yi Xu & Rui Li & Changping Zhao & Zhenghui Yuan, 2022. "Comprehensive Evaluation of China’s Input–Output Sector Status Based on the Entropy Weight-Social Network Analysis Method," Sustainability, MDPI, vol. 14(21), pages 1-25, November.
    17. Zhen Yu & Philippe Ciais & Shilong Piao & Richard A. Houghton & Chaoqun Lu & Hanqin Tian & Evgenios Agathokleous & Giri Raj Kattel & Stephen Sitch & Daniel Goll & Xu Yue & Anthony Walker & Pierre Frie, 2022. "Forest expansion dominates China’s land carbon sink since 1980," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Chaochao Du & Xiaoyong Bai & Yangbing Li & Qiu Tan & Cuiwei Zhao & Guangjie Luo & Luhua Wu & Fei Chen & Chaojun Li & Chen Ran & Xuling Luo & Huipeng Xi & Huan Chen & Sirui Zhang & Min Liu & Suhua Gong, 2022. "Inventory of China’s Net Biome Productivity since the 21st Century," Land, MDPI, vol. 11(8), pages 1-16, August.
    19. Lin Wang & Junsan Zhao & Fengxia Li & Guoping Chen, 2023. "Spatial Coupling of Carbon Sink Capacity with High-Quality Development Based on Exploitation and Protection Pattern," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    20. Zhengmeng Hou & Jiashun Luo & Yachen Xie & Lin Wu & Liangchao Huang & Ying Xiong, 2022. "Carbon Circular Utilization and Partially Geological Sequestration: Potentialities, Challenges, and Trends," Energies, MDPI, vol. 16(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10396-:d:1184735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.