IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p13710-d950408.html
   My bibliography  Save this article

Evaluation of Comprehensive Emergency Capacity to Urban Flood Disaster: An Example from Zhengzhou City in Henan Province, China

Author

Listed:
  • Xianghai Li

    (Safety and Emergency Management Research Center, Henan Polytechnic University, Jiaozuo 454000, China)

  • Mengjie Li

    (Safety and Emergency Management Research Center, Henan Polytechnic University, Jiaozuo 454000, China
    Emergency Management School, Henan Polytechnic University, Jiaozuo 454000, China)

  • Kaikai Cui

    (Safety and Emergency Management Research Center, Henan Polytechnic University, Jiaozuo 454000, China
    Emergency Management School, Henan Polytechnic University, Jiaozuo 454000, China)

  • Tao Lu

    (Safety and Emergency Management Research Center, Henan Polytechnic University, Jiaozuo 454000, China)

  • Yanli Xie

    (Library, Henan Polytechnic University, Jiaozuo 454000, China)

  • Delin Liu

    (Safety and Emergency Management Research Center, Henan Polytechnic University, Jiaozuo 454000, China
    Emergency Management School, Henan Polytechnic University, Jiaozuo 454000, China)

Abstract

In the context of climate change and urbanization, increasing flood disasters leads to severe losses and impacts on urban inhabitants. In order to enhance urban capacity to cope with floods and reduce losses, the comprehensive emergency-response capacity to flood disaster (CERCF) was studied in Zhengzhou City, which is seriously affected by floods. Firstly, the evaluation index system of flood emergency capacity was constructed from three aspects, including pre-disaster prevention capacity, during-disaster disposal capacity and post-disaster recovery capacity. Secondly, the weight of each index was calculated by the combination of the entropy weight method and the coefficient of variation method, and the evaluation model was established by the comprehensive index method. Thirdly, the CERCF of Zhengzhou City was classified into three grades by the Jenks natural-breakpoint classification method. Finally, the contribution model was used to reveal the contribution factors of flood emergency capacity in Zhengzhou city. The following beneficial conclusions were drawn: (1) The overall CERCF of Zhengzhou City was on a low level. The proportions of the study area at low, medium and high levels were 58.33%, 33.33% and 8.34%, respectively. Spatially, the CERCF was high in central regions and low in in the west and east parts of Zhengzhou City. (2) It was found that PDPC and PDRC made the greatest contribution, while DDDC has a relatively low contribution degree.

Suggested Citation

  • Xianghai Li & Mengjie Li & Kaikai Cui & Tao Lu & Yanli Xie & Delin Liu, 2022. "Evaluation of Comprehensive Emergency Capacity to Urban Flood Disaster: An Example from Zhengzhou City in Henan Province, China," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13710-:d:950408
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/13710/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/13710/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ting Wang & Linsheng Yang & Shaohong Wu & Jiangbo Gao & Binggan Wei, 2020. "Quantitative Assessment of Natural Disaster Coping Capacity: An Application for Typhoons," Sustainability, MDPI, vol. 12(15), pages 1-16, July.
    2. Hong Lv & Xinjian Guan & Yu Meng, 2020. "Comprehensive evaluation of urban flood-bearing risks based on combined compound fuzzy matter-element and entropy weight model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1823-1841, September.
    3. Lu, Qing-Chang, 2018. "Modeling network resilience of rail transit under operational incidents," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 227-237.
    4. Enliang Guo & Jiquan Zhang & Xuehui Ren & Qi Zhang & Zhongyi Sun, 2014. "Integrated risk assessment of flood disaster based on improved set pair analysis and the variable fuzzy set theory in central Liaoning Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 947-965, November.
    5. Irfan Ahmad Rana & Jayant K. Routray, 2018. "Integrated methodology for flood risk assessment and application in urban communities of Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 239-266, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongling Zhang & Miao Zhou & Nana Kong & Xin Li & Xiaobing Zhou, 2022. "Evaluation of Emergency Response Capacity of Urban Pluvial Flooding Public Service Based on Scenario Simulation," IJERPH, MDPI, vol. 19(24), pages 1-16, December.
    2. Lu Liu & Jingjing Pei & Huiquan Wang & Yun Luo, 2023. "The Evaluation and Obstacle Analysis of Urban Safety Resilience Based on Multi-Factor Perspective in Beijing," Land, MDPI, vol. 12(10), pages 1-29, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Qing-Chang & Xu, Peng-Cheng & Zhao, Xiangmo & Zhang, Lei & Li, Xiaoling & Cui, Xin, 2022. "Measuring network interdependency between dependent networks: A supply-demand-based approach," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. Byungsun Yang & Dong Kun Lee, 2021. "Planning Strategy for the Reduction of Runoff Using Urban Green Space," Sustainability, MDPI, vol. 13(4), pages 1-13, February.
    3. Enliang Guo & Jiquan Zhang & Yongfang Wang & Ha Si & Feng Zhang, 2016. "Dynamic risk assessment of waterlogging disaster for maize based on CERES-Maize model in Midwest of Jilin Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1747-1761, September.
    4. Hong Lv & Xinjian Guan & Yu Meng, 2020. "Comprehensive evaluation of urban flood-bearing risks based on combined compound fuzzy matter-element and entropy weight model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1823-1841, September.
    5. Junnan Xiong & Chongchong Ye & Weiming Cheng & Liang Guo & Chenghu Zhou & Xiaolei Zhang, 2019. "The Spatiotemporal Distribution of Flash Floods and Analysis of Partition Driving Forces in Yunnan Province," Sustainability, MDPI, vol. 11(10), pages 1-18, May.
    6. Zhang, Jianhua & Wang, Ziqi & Wang, Shuliang & Shao, Wenchao & Zhao, Xun & Liu, Weizhi, 2021. "Vulnerability assessments of weighted urban rail transit networks with integrated coupled map lattices," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    7. Lu, Qing-Chang & Zhang, Lei & Xu, Peng-Cheng & Cui, Xin & Li, Jing, 2022. "Modeling network vulnerability of urban rail transit under cascading failures: A Coupled Map Lattices approach," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    8. Liang, Jinpeng & Zang, Guangzhi & Liu, Haitao & Zheng, Jianfeng & Gao, Ziyou, 2023. "Reducing passenger waiting time in oversaturated metro lines with passenger flow control policy," Omega, Elsevier, vol. 117(C).
    9. Cui, Yi & Zhou, Yuliang & Jin, Juliang & Jiang, Shangming & Wu, Chengguo & Ning, Shaowei, 2023. "Spatiotemporal characteristics and obstacle factors identification of agricultural drought disaster risk: A case study across Anhui Province, China," Agricultural Water Management, Elsevier, vol. 289(C).
    10. Liudan Jiao & Yinghan Zhu & Xiaosen Huo & Ya Wu & Yu Zhang, 2023. "Resilience assessment of metro stations against rainstorm disaster based on cloud model: a case study in Chongqing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2311-2337, March.
    11. Huang, Wencheng & Zhou, Bowen & Yu, Yaocheng & Sun, Hao & Xu, Pengpeng, 2021. "Using the disaster spreading theory to analyze the cascading failure of urban rail transit network," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    12. Calzada-Infante, L. & Adenso-Díaz, B. & García Carbajal, S., 2020. "Analysis of the European international railway network and passenger transfers," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    13. Yin, Dezhi & Huang, Wencheng & Shuai, Bin & Liu, Hongyi & Zhang, Yue, 2022. "Structural characteristics analysis and cascading failure impact analysis of urban rail transit network: From the perspective of multi-layer network," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    14. Kun Cheng & Qiang Fu & Tianxiao Li & Qiuxiang Jiang & Wei Liu, 2015. "Regional food security risk assessment under the coordinated development of water resources," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 603-619, August.
    15. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    16. Kerim Koc & Zeynep Işık, 2020. "A multi-agent-based model for sustainable governance of urban flood risk mitigation measures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 1079-1110, October.
    17. Zaihai Wu & Zhaojun Qi & Yunpeng Kou & Zheng Li & Guoyan Zhao & Weizhang Liang, 2022. "Application of Extended Set Pair Analysis on Wear Risk Evaluation of Backfill Pipeline," Sustainability, MDPI, vol. 14(23), pages 1-17, November.
    18. Muhammad Hussain & Muhammad Tayyab & Jiquan Zhang & Ashfaq Ahmad Shah & Kashif Ullah & Ummer Mehmood & Bazel Al-Shaibah, 2021. "GIS-Based Multi-Criteria Approach for Flood Vulnerability Assessment and Mapping in District Shangla: Khyber Pakhtunkhwa, Pakistan," Sustainability, MDPI, vol. 13(6), pages 1-29, March.
    19. Shutian Zhou & Guofang Zhai, 2023. "A Multi-Hazard Risk Assessment Framework for Urban Disaster Prevention Planning: A Case Study of Xiamen, China," Land, MDPI, vol. 12(10), pages 1-19, October.
    20. Aorui Bi & Shuya Huang & Xinguo Sun, 2023. "Risk Assessment of Oil and Gas Pipeline Based on Vague Set-Weighted Set Pair Analysis Method," Mathematics, MDPI, vol. 11(2), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13710-:d:950408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.