IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i16p9990-d886639.html
   My bibliography  Save this article

Exploring Environmental and Geographical Factors Influencing the Spread of Infectious Diseases with Interactive Maps

Author

Listed:
  • Saturnino Luz

    (Usher Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh EH16 4UX, UK)

  • Masood Masoodian

    (School of Arts, Design and Architecture, Aalto University, 02150 Espoo, Finland)

Abstract

Environmental problems due to human activities such as deforestation, urbanisation, and large scale intensive farming are some of the major factors behind the rapid spread of many infectious diseases. This in turn poses significant challenges not only in as regards providing adequate healthcare, but also in supporting healthcare workers, medical researchers, policy makers, and others involved in managing infectious diseases. These challenges include surveillance, tracking of infections, communication of public health knowledge and promotion of behavioural change. Behind these challenges lies a complex set of factors which include not only biomedical and population health determinants but also environmental, climatic, geographic, and socioeconomic variables. While there is broad agreement that these factors are best understood when considered in conjunction, aggregating and presenting diverse information sources requires effective information systems, software tools, and data visualisation. In this article, we argue that interactive maps, which couple geographical information systems and advanced information visualisation techniques, provide a suitable unifying framework for coordinating these tasks. Therefore, we examine how interactive maps can support spatial epidemiological visualisation and modelling involving distributed and dynamic data sources and incorporating temporal aspects of disease spread. Combining spatial and temporal aspects can be crucial in such applications. We discuss these issues in the context of support for disease surveillance in remote regions, utilising tools that facilitate distributed data collection and enable multidisciplinary collaboration, while also providing support for simulation and data analysis. We show that interactive maps deployed on a combination of mobile devices and large screens can provide effective means for collection, sharing, and analysis of health data.

Suggested Citation

  • Saturnino Luz & Masood Masoodian, 2022. "Exploring Environmental and Geographical Factors Influencing the Spread of Infectious Diseases with Interactive Maps," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:9990-:d:886639
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/16/9990/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/16/9990/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geoffrey M. Jacquez, 2000. "Spatial analysis in epidemiology: Nascent science or a failure of GIS?," Journal of Geographical Systems, Springer, vol. 2(1), pages 91-97, March.
    2. Swen P. M. Bos & Tina Cornioley & Anne Dray & Patrick O. Waeber & Claude A. Garcia, 2020. "Exploring Livelihood Strategies of Shifting Cultivation Farmers in Assam through Games," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    3. Itai Kloog & Lara Ifat Kaufman & Kees De Hoogh, 2018. "Using Open Street Map Data in Environmental Exposure Assessment Studies: Eastern Massachusetts, Bern Region, and South Israel as a Case Study," IJERPH, MDPI, vol. 15(11), pages 1-21, November.
    4. Stephen Eubank & Hasan Guclu & V. S. Anil Kumar & Madhav V. Marathe & Aravind Srinivasan & Zoltán Toroczkai & Nan Wang, 2004. "Modelling disease outbreaks in realistic urban social networks," Nature, Nature, vol. 429(6988), pages 180-184, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Floriana Gargiulo & Sônia Ternes & Sylvie Huet & Guillaume Deffuant, 2010. "An Iterative Approach for Generating Statistically Realistic Populations of Households," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-9, January.
    2. Bisin, Alberto & Moro, Andrea, 2022. "Spatial‐SIR with network structure and behavior: Lockdown rules and the Lucas critique," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 370-388.
    3. Richard C. Larson, 2007. "Simple Models of Influenza Progression Within a Heterogeneous Population," Operations Research, INFORMS, vol. 55(3), pages 399-412, June.
    4. Askitas, Nikos & Tatsiramos, Konstantinos & Verheyden, Bertrand, 2020. "Lockdown Strategies, Mobility Patterns and COVID-19," IZA Discussion Papers 13293, Institute of Labor Economics (IZA).
    5. Jürgen Hackl & Thibaut Dubernet, 2019. "Epidemic Spreading in Urban Areas Using Agent-Based Transportation Models," Future Internet, MDPI, vol. 11(4), pages 1-14, April.
    6. Hyeyoung Kim & Ningchuan Xiao & Mark Moritz & Rebecca Garabed & Laura W. Pomeroy, 2016. "Simulating the Transmission of Foot-And-Mouth Disease Among Mobile Herds in the Far North Region, Cameroon," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(2), pages 1-6.
    7. Yeran Sun & Hongchao Fan & Ming Li & Alexander Zipf, 2016. "Identifying the city center using human travel flows generated from location-based social networking data," Environment and Planning B, , vol. 43(3), pages 480-498, May.
    8. Kuo-Ying Wang, 2014. "How Change of Public Transportation Usage Reveals Fear of the SARS Virus in a City," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-10, March.
    9. Stipic, Dorian & Bradac, Mislav & Lipic, Tomislav & Podobnik, Boris, 2021. "Effects of quarantine disobedience and mobility restrictions on COVID-19 pandemic waves in dynamical networks," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    10. Bisin, Alberto & Moro, Andrea, 2022. "JUE insight: Learning epidemiology by doing: The empirical implications of a Spatial-SIR model with behavioral responses," Journal of Urban Economics, Elsevier, vol. 127(C).
    11. Wenting Yang & Jiantong Zhang & Ruolin Ma, 2020. "The Prediction of Infectious Diseases: A Bibliometric Analysis," IJERPH, MDPI, vol. 17(17), pages 1-19, August.
    12. Tayo Alex Adekiya & Raphael Taiwo Aruleba & Babatunji Emmanuel Oyinloye & Kazeem Oare Okosun & Abidemi Paul Kappo, 2019. "The Effect of Climate Change and the Snail-Schistosome Cycle in Transmission and Bio-Control of Schistosomiasis in Sub-Saharan Africa," IJERPH, MDPI, vol. 17(1), pages 1-22, December.
    13. Rezapour, Shabnam & Baghaian, Atefe & Naderi, Nazanin & Sarmiento, Juan P., 2023. "Infection transmission and prevention in metropolises with heterogeneous and dynamic populations," European Journal of Operational Research, Elsevier, vol. 304(1), pages 113-138.
    14. He, Pan & Lovo, Stefania & Veronesi, Marcella, 2022. "Social networks and renewable energy technology adoption: Empirical evidence from biogas adoption in China," Energy Economics, Elsevier, vol. 106(C).
    15. Jayanthi Rajarethinam & Janet Ong & Shi-Hui Lim & Yu-Heng Tay & Wacha Bounliphone & Chee-Seng Chong & Grace Yap & Lee-Ching Ng, 2019. "Using Human Movement Data to Identify Potential Areas of Zika Transmission: Case Study of the Largest Zika Cluster in Singapore," IJERPH, MDPI, vol. 16(5), pages 1-13, March.
    16. Michał Wielechowski & Katarzyna Czech & Łukasz Grzęda, 2020. "Decline in Mobility: Public Transport in Poland in the time of the COVID-19 Pandemic," Economies, MDPI, vol. 8(4), pages 1-24, September.
    17. S. M. Niaz Arifin & Rumana Reaz Arifin & Dilkushi De Alwis Pitts & M. Sohel Rahman & Sara Nowreen & Gregory R. Madey & Frank H. Collins, 2015. "Landscape Epidemiology Modeling Using an Agent-Based Model and a Geographic Information System," Land, MDPI, vol. 4(2), pages 1-35, May.
    18. I. Gede Nyoman M. Jaya & Henk Folmer, 2021. "Bayesian spatiotemporal forecasting and mapping of COVID‐19 risk with application to West Java Province, Indonesia," Journal of Regional Science, Wiley Blackwell, vol. 61(4), pages 849-881, September.
    19. Burris, Courtney & Nikolaev, Alexander & Zhong, Shiran & Bian, Ling, 2021. "Network effects in influenza spread: The impact of mobility and socio-economic factors," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    20. Zhou Huang & Ganmin Yin & Xia Peng & Xiao Zhou & Quanhua Dong, 2023. "Quantifying the environmental characteristics influencing the attractiveness of commercial agglomerations with big geo-data," Environment and Planning B, , vol. 50(9), pages 2470-2490, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:9990-:d:886639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.