IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9447-d878028.html
   My bibliography  Save this article

Assessment of a Cocoa-Based Agroforestry System in the Southwest of Colombia

Author

Listed:
  • William Ballesteros-Possú

    (Department of Natural Resources and Agroforestry Systems, Universidad de Nariño, Ciudadela Universitaria Torobajo, San Juan de Pasto 52001, Colombia)

  • Juan Carlos Valencia

    (Agricultural Sciences School, Universidad Abierta y a Distancia—UNAD, Tumaco 528509, Colombia)

  • Jorge Fernando Navia-Estrada

    (Department of Natural Resources and Agroforestry Systems, Universidad de Nariño, Ciudadela Universitaria Torobajo, San Juan de Pasto 52001, Colombia)

Abstract

Cocoa-based agroforests play an important role in farmer livelihood and the global environment; however, despite these facts, their low yields and tree aging put at risk their fate. This project investigated the carbon storage potential, productivity, and economics of different agroforestry arrangements of cocoa ( Theobroma cacao ) with Melina ( Gmelina arborea ) trees, in the southwest of Colombia. We established the experiment under a Randomized Complete Blocks design with seven treatments and three repetitions. Different allometric models were tested. Allometric models were made for G. arborea trees with dbh, ranging between 30.24 and 50.11 cm. The total carbon accumulation fluctuated between 49.2 (Treatment 4) and 88.5 t ha −1 (Treatment 2), soil organic matter (SOM) ranged between 9 and 17%, bulk density decreased from 0.83 to 0.77 g cm −3 . Cocoa yield ranged between 311 kg ha −1 year −1 (Treatment 7, traditional farm) and 922 kg ha −1 year −1 (Treatment 6). Treatment 6 showed the best performance with a net present value (NPV) of COP 1,446,467 (US $337.6), an internal rate of return (IRR) of 42%, and a cost-benefit ratio (B/C) of 1.67%. The benefits of AFS were also evidenced in some of the physical and chemical soil properties. Despite local marginality, these cocoa agroforest arrangements are a viable alternative to improve the traditional (local) cocoa systems because cacao agroforest arrangements increased cacao yield and carbon storage becoming a suitable alternative to improve traditional systems.

Suggested Citation

  • William Ballesteros-Possú & Juan Carlos Valencia & Jorge Fernando Navia-Estrada, 2022. "Assessment of a Cocoa-Based Agroforestry System in the Southwest of Colombia," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9447-:d:878028
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9447/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9447/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Janina Grabs & Sophia Louise Carodenuto, 2021. "Traders as sustainability governance actors in global food supply chains: A research agenda," Business Strategy and the Environment, Wiley Blackwell, vol. 30(2), pages 1314-1332, February.
    2. Busquet, Milande & Bosma, Niels & Hummels, Harry, 2021. "A multidimensional perspective on child labor in the value chain: The case of the cocoa value chain in West Africa," World Development, Elsevier, vol. 146(C).
    3. Verena Seufert & Navin Ramankutty & Jonathan A. Foley, 2012. "Comparing the yields of organic and conventional agriculture," Nature, Nature, vol. 485(7397), pages 229-232, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tennhardt, Lina & Lazzarini, Gianna & Weisshaidinger, Rainer & Schader, Christian, 2022. "Do environmentally-friendly cocoa farms yield social and economic co-benefits?," Ecological Economics, Elsevier, vol. 197(C).
    2. Wang, Linlin & Li, Qiang & Coulter, Jeffrey A. & Xie, Junhong & Luo, Zhuzhu & Zhang, Renzhi & Deng, Xiping & Li, Linglin, 2020. "Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 229(C).
    3. Daniel P. Roberts & Autar K. Mattoo, 2018. "Sustainable Agriculture—Enhancing Environmental Benefits, Food Nutritional Quality and Building Crop Resilience to Abiotic and Biotic Stresses," Agriculture, MDPI, vol. 8(1), pages 1-24, January.
    4. Kalaitzandonakes, Nicholas & Lusk, Jayson & Magnier, Alexandre, 2018. "The price of non-genetically modified (non-GM) food," Food Policy, Elsevier, vol. 78(C), pages 38-50.
    5. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    6. Kalle Margus & Viacheslav Eremeev & Evelin Loit & Eve Runno-Paurson & Erkki Mäeorg & Anne Luik & Liina Talgre, 2022. "Impact of Farming System on Potato Yield and Tuber Quality in Northern Baltic Sea Climate Conditions," Agriculture, MDPI, vol. 12(4), pages 1-12, April.
    7. de la Cruz, Vera Ysabel V. & Tantriani, & Cheng, Weiguo & Tawaraya, Keitaro, 2023. "Yield gap between organic and conventional farming systems across climate types and sub-types: A meta-analysis," Agricultural Systems, Elsevier, vol. 211(C).
    8. Maurer, Rainer, 2023. "Comparing the effect of different agricultural land-use systems on biodiversity," Land Use Policy, Elsevier, vol. 134(C).
    9. Natalia Brzezina & Birgit Kopainsky & Erik Mathijs, 2016. "Can Organic Farming Reduce Vulnerabilities and Enhance the Resilience of the European Food System? A Critical Assessment Using System Dynamics Structural Thinking Tools," Sustainability, MDPI, vol. 8(10), pages 1-32, September.
    10. Patrick M. Carr & Greta G. Gramig & Mark A. Liebig, 2013. "Impacts of Organic Zero Tillage Systems on Crops, Weeds, and Soil Quality," Sustainability, MDPI, vol. 5(7), pages 1-30, July.
    11. Rana Shahzad Noor & Fiaz Hussain & Muhammad Umar Farooq & Muhammad Umair, 2020. "Cost And Profitability Analysis Of Cherry Production: The Case Study Of District Quetta, Pakistan," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 2(2), pages 74-80, June.
    12. Debuschewitz, Emil & Sanders, Jürn, 2021. "Bewertung der Umweltwirkungen des ökologischen Landbaus im Kontext der kontroversen wissenschaftlichen Diskurse," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317076, German Association of Agricultural Economists (GEWISOLA).
    13. I. P. Sapinas & L. K. Abbott, 2021. "Soil Fertility Management Based on Certified Organic Agriculture Standards - a Review," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 9(2), pages 1-1, December.
    14. Carlson, Andrea & Greene, Catherine & Raszap Skorbiansky, Sharon & Hitaj, Claudia & Ha, Kim & Cavigelli, Michel & Ferrier, Peyton & McBride, William, 2023. "U.S. Organic Production, Markets, Consumers, and Policy, 2000-21," USDA Miscellaneous 333551, United States Department of Agriculture.
    15. Khalid Butti Al Shamsi & Antonio Compagnoni & Giuseppe Timpanaro & Salvatore Luciano Cosentino & Paolo Guarnaccia, 2018. "A Sustainable Organic Production Model for “Food Sovereignty” in the United Arab Emirates and Sicily-Italy," Sustainability, MDPI, vol. 10(3), pages 1-18, February.
    16. ZaDarreyal Wiggins & Dilip Nandwani, 2021. "Innovations of Organic Agriculture, Challenges and Organic Certification in the United States," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 9(3), pages 1-50, December.
    17. Marek Zieliński & Wioletta Wrzaszcz & Jolanta Sobierajewska & Marcin Adamski, 2024. "Development and Effects of Organic Farms in Poland, Taking into Account Their Location in Areas Facing Natural or Other Specific Constraints," Agriculture, MDPI, vol. 14(2), pages 1-18, February.
    18. Ming-Jie Sun & Ying Chao & Wei He & Xi-Rui Kang & Quan-Gang Yang & Hui Wang & Hong Pan & Yan-Hong Lou & Yu-Ping Zhuge, 2022. "Changes in Foxtail Millet ( Setaria italica L.) Yield, Quality, and Soil Microbiome after Replacing Chemical Nitrogen Fertilizers with Organic Fertilizers," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    19. Cecilia Bellora & Jean-Marc Bourgeon, 2014. "Agricultural Trade, Biodiversity Effects and Food Price Volatility," Working Papers hal-01052971, HAL.
    20. Kuo Ming Chu, 2018. "Mediating Influences of Attitude on Internal and External Factors Influencing Consumers’ Intention to Purchase Organic Foods in China," Sustainability, MDPI, vol. 10(12), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9447-:d:878028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.