IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9280-d874592.html
   My bibliography  Save this article

Microbial Diversity and Adaptation under Salt-Affected Soils: A Review

Author

Listed:
  • Chiranjeev Kumawat

    (Department of Soil Science and Agricultural Chemistry, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, Rajasthan, India
    These authors contributed equally to this work.)

  • Ajay Kumar

    (Department of Microbiology, COBS&H, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004, Haryana, India)

  • Jagdish Parshad

    (Department of Microbiology, COBS&H, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004, Haryana, India
    These authors contributed equally to this work.)

  • Shyam Sunder Sharma

    (Department of Soil Science and Agricultural Chemistry, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, Rajasthan, India)

  • Abhik Patra

    (Department of Soil Science and Agriculture Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
    Krishi Vigyan Kendra, Narkatiaganj, West Champaran 845455, Bihar, India)

  • Prerna Dogra

    (Department of Soil Science and Agricultural Chemistry, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, Rajasthan, India)

  • Govind Kumar Yadav

    (Department of Soil Science and Agricultural Chemistry, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, Rajasthan, India)

  • Sunil Kumar Dadhich

    (Department of Soil Science and Agricultural Chemistry, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, Rajasthan, India)

  • Rajhans Verma

    (Department of Soil Science and Agricultural Chemistry, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, Rajasthan, India)

  • Girdhari Lal Kumawat

    (Department of Plant Pathology, Sri Karan Narendra Agriculture University, Jobner, Jaipur 303329, Rajasthan, India)

Abstract

The salinization of soil is responsible for the reduction in the growth and development of plants. As the global population increases day by day, there is a decrease in the cultivation of farmland due to the salinization of soil, which threatens food security. Salt-affected soils occur all over the world, especially in arid and semi-arid regions. The total area of global salt-affected soil is 1 billion ha, and in India, an area of nearly 6.74 million ha −1 is salt-stressed, out of which 2.95 million ha −1 are saline soil (including coastal) and 3.78 million ha −1 are alkali soil. The rectification and management of salt-stressed soils require specific approaches for sustainable crop production. Remediating salt-affected soil by chemical, physical and biological methods with available resources is recommended for agricultural purposes. Bioremediation is an eco-friendly approach compared to chemical and physical methods. The role of microorganisms has been documented by many workers for the bioremediation of such problematic soils. Halophilic Bacteria, Arbuscular mycorrhizal fungi, Cyanobacteria, plant growth-promoting rhizobacteria and microbial inoculation have been found to be effective for plant growth promotion under salt-stress conditions. The microbial mediated approaches can be adopted for the mitigation of salt-affected soil and help increase crop productivity. A microbial product consisting of beneficial halophiles maintains and enhances the soil health and the yield of the crop in salt-affected soil. This review will focus on the remediation of salt-affected soil by using microorganisms and their mechanisms in the soil and interaction with the plants.

Suggested Citation

  • Chiranjeev Kumawat & Ajay Kumar & Jagdish Parshad & Shyam Sunder Sharma & Abhik Patra & Prerna Dogra & Govind Kumar Yadav & Sunil Kumar Dadhich & Rajhans Verma & Girdhari Lal Kumawat, 2022. "Microbial Diversity and Adaptation under Salt-Affected Soils: A Review," Sustainability, MDPI, vol. 14(15), pages 1-24, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9280-:d:874592
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9280/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9280/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nelson, Gerald C. & Rosegrant, Mark W. & Koo, Jawoo & Robertson, Richard & Sulser, Timothy & Zhu, Tingju & Ringler, Claudia & Msangi, Siwa & Palazzo, Amanda & Batka, Miroslav & Magalhaes, Marilia & Va, 2009. "Climate change: Impact on agriculture and costs of adaptation," Food policy reports 21, International Food Policy Research Institute (IFPRI).
    2. Jinxia Wang & Robert Mendelsohn & Ariel Dinar & Jikun Huang & Scott Rozelle & Lijuan Zhang, 2009. "The impact of climate change on China's agriculture," Agricultural Economics, International Association of Agricultural Economists, vol. 40(3), pages 323-337, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Li & Turvey, Calum G., 2014. "Climate change, adaptation and China's grain production," China Economic Review, Elsevier, vol. 28(C), pages 72-89.
    2. Zeenatul Islam & Mohammad Alauddin & Md. Abdur Rashid Sarker, 2017. "Farmers’ perception on climate change-driven rice production loss in drought-prone and groundwater-depleted areas of Bangladesh: An ordered probit analysis," Discussion Papers Series 579, School of Economics, University of Queensland, Australia.
    3. Abdoul G. Sam & Babatunde O. Abidoye & Sihle Mashaba, 2021. "Climate change and household welfare in sub-Saharan Africa: empirical evidence from Swaziland," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(2), pages 439-455, April.
    4. repec:fpr:ifprib:2012ghienglish is not listed on IDEAS
    5. Richard S.J. Tol, 2003. "The Marginal Costs Of Carbon Dioxide Emissions: An Assessment Of The Uncertainties," Working Papers FNU-19, Research unit Sustainability and Global Change, Hamburg University, revised Apr 2003.
    6. Jeetendra Prakash Aryal & Tek B. Sapkota & Ritika Khurana & Arun Khatri-Chhetri & Dil Bahadur Rahut & M. L. Jat, 2020. "Climate change and agriculture in South Asia: adaptation options in smallholder production systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5045-5075, August.
    7. Jayatilleke S. Bandara & Yiyong Cai, 2014. "The impact of climate change on food crop productivity, food prices and food security in South Asia," Economic Analysis and Policy, Elsevier, vol. 44(4), pages 451-465.
    8. William D. Nordhaus & Robert Mendelsohn, 1999. "The Impact of Global Warming on Agriculture: A Ricardian Analysis: Reply," American Economic Review, American Economic Association, vol. 89(4), pages 1046-1048, September.
    9. Brown, Peter R. & Bridle, Kerry L. & Crimp, Steven J., 2016. "Assessing the capacity of Australian broadacre mixed farmers to adapt to climate change: Identifying constraints and opportunities," Agricultural Systems, Elsevier, vol. 146(C), pages 129-141.
    10. Ouraich, Ismail & Dudu, Hasan & Tyner, Wallace E. & Cakmak, Erol, 2014. "Could Free Trade Alleviate Effects of Climate Change: A Worldwide Analysis with Emphasis on Morocco and Turkey," Conference papers 332460, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    11. Mukherjee, Manisha, 2022. "Climate change and migration: Reviewing the role of access to agricultural adaptation measures," MERIT Working Papers 2022-039, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    12. Nagisa Shiiba & Hide-Fumi Yokoo & Voravee Saengavut & Siraprapa Bumrungkit, 2023. "Ambiguity Aversion And Individual Adaptation To Climate Change: Evidence From A Farmer Survey In Northeastern Thailand," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 1-29, February.
    13. Sovacool, Benjamin K. & Bazilian, Morgan & Griffiths, Steve & Kim, Jinsoo & Foley, Aoife & Rooney, David, 2021. "Decarbonizing the food and beverages industry: A critical and systematic review of developments, sociotechnical systems and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    14. Cook, Aaron M. & Ricker-Gilbert, Jacob E. & Sesmero, Juan P., 2013. "How do African households adapt to climate change? Evidence from Malawi," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150507, Agricultural and Applied Economics Association.
    15. Claudia Ringler & Menaal Ebrahim, 2015. "Policy Nook: "Climate Change and Water: What Can Economics Tell Us?"," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 1(03), pages 1-7.
    16. Esteve, Paloma & Varela-Ortega, Consuelo & Blanco-Gutiérrez, Irene & Downing, Thomas E., 2015. "A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture," Ecological Economics, Elsevier, vol. 120(C), pages 49-58.
    17. Sanjeev Kumar & Ajay K. Singh, 2023. "Modeling the effects of climate change on agricultural productivity: evidence from Himachal Pradesh, India," Asia-Pacific Journal of Regional Science, Springer, vol. 7(2), pages 521-548, June.
    18. Mauro Vigani & Manuel Gomez-Barbero & Emilio Rodríguez-Cerezo, 2015. "The determinants of wheat yields: the role of sustainable innovation, policies and risks in France and Hungary," JRC Research Reports JRC95950, Joint Research Centre.
    19. Channing Arndt & William Farmer & Kenneth Strzepek & James Thurlow, 2012. "Climate Change, Agriculture and Food Security in Tanzania," Review of Development Economics, Wiley Blackwell, vol. 16(3), pages 378-393, August.
    20. Channing Arndt & William Farmer & Kenneth Strzepek & James Thurlow, 2012. "Climate Change, Agriculture and Food Security in Tanzania," Review of Development Economics, Wiley Blackwell, vol. 16(3), pages 378-393, August.
    21. Chiarity Zetem Chiambah & Cordelia G. Kometa, 2022. "Rainfall Variability and Food Crop Vulnerability in Ndu Sub-Division, North West Region of Cameroon," Journal of Geography and Geology, Canadian Center of Science and Education, vol. 11(3), pages 1-39, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9280-:d:874592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.