IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p7739-d847095.html
   My bibliography  Save this article

The Potential of Blockchain Technology in the Transition towards Sustainable Food Systems

Author

Listed:
  • Julia Francesca Wünsche

    (Department of People and Society, Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden)

  • Fredrik Fernqvist

    (Department of People and Society, Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden)

Abstract

Food systems are both contributing to and affected by environmental degradation and climate change. The transition towards resilient and sustainable food systems is essential to ensure food security and minimise negative environmental impacts. Innovative technologies can accelerate this transition. Blockchain technology (BCT) is attracting attention as it can deliver transparency to complex global food supply chains and has the potential to guide current food production towards better sustainability and efficiency. This case study investigated the opportunities that BCT can offer to food supply chains. Qualitative interviews with eight main BCT providers were conducted to evaluate the current state of BCT and put it into perspective by mapping out advantages, disadvantages, incentives, motives, and expectations connected to its implementation in global food systems. A thematic analysis showed that, while BCT was considered beneficial by all interviewees, uptake is slow due to high implementation costs and the lack of incentives for companies throughout the food chain from farms to food industry and retail. Results further revealed that the advantages of BCT go beyond communication of trustworthy information and development of closer producer–consumer relationships. In fact, it can provide the opportunity to decrease food waste, enhance working conditions throughout the supply chain, and promote sustainable consumption habits. As BCT may be increasingly used in the food supply chain, the results give a basis for future research that may leverage both qualitative and quantitative methods to examine actors’ behaviours. Also, the importance of improving user experiences through functional applications and software to facilitate the adoption of the technology is stressed.

Suggested Citation

  • Julia Francesca Wünsche & Fredrik Fernqvist, 2022. "The Potential of Blockchain Technology in the Transition towards Sustainable Food Systems," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7739-:d:847095
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/7739/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/7739/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sara Saberi & Mahtab Kouhizadeh & Joseph Sarkis & Lejia Shen, 2019. "Blockchain technology and its relationships to sustainable supply chain management," International Journal of Production Research, Taylor & Francis Journals, vol. 57(7), pages 2117-2135, April.
    2. Jennifer Clapp, 2018. "Mega-Mergers on the Menu: Corporate Concentration and the Politics of Sustainability in the Global Food System," Global Environmental Politics, MIT Press, vol. 18(2), pages 12-33, May.
    3. Sophia Murphy, 2008. "Globalization and Corporate Concentration in the Food and Agriculture Sector," Development, Palgrave Macmillan;Society for International Deveopment, vol. 51(4), pages 527-533, December.
    4. Gardner, T.A. & Benzie, M. & Börner, J. & Dawkins, E. & Fick, S. & Garrett, R. & Godar, J. & Grimard, A. & Lake, S. & Larsen, R.K. & Mardas, N. & McDermott, C.L. & Meyfroidt, P. & Osbeck, M. & Persson, 2019. "Transparency and sustainability in global commodity supply chains," World Development, Elsevier, vol. 121(C), pages 163-177.
    5. Frank Yiannas, 2018. "A New Era of Food Transparency Powered by Blockchain," Innovations: Technology, Governance, Globalization, MIT Press, vol. 12(1-2), pages 46-56, Summer-Fa.
    6. Kamble, Sachin S. & Gunasekaran, Angappa & Gawankar, Shradha A., 2020. "Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications," International Journal of Production Economics, Elsevier, vol. 219(C), pages 179-194.
    7. Johan Rockström & Will Steffen & Kevin Noone & Åsa Persson & F. Stuart Chapin & Eric F. Lambin & Timothy M. Lenton & Marten Scheffer & Carl Folke & Hans Joachim Schellnhuber & Björn Nykvist & Cynthia , 2009. "A safe operating space for humanity," Nature, Nature, vol. 461(7263), pages 472-475, September.
    8. Alexandra Jurgilevich & Traci Birge & Johanna Kentala-Lehtonen & Kaisa Korhonen-Kurki & Janna Pietikäinen & Laura Saikku & Hanna Schösler, 2016. "Transition towards Circular Economy in the Food System," Sustainability, MDPI, vol. 8(1), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abbate, Stefano & Centobelli, Piera & Cerchione, Roberto, 2023. "From Fast to Slow: An Exploratory Analysis of Circular Business Models in the Italian Apparel Industry," International Journal of Production Economics, Elsevier, vol. 260(C).
    2. Summer K. Mohamed & Sandra Haddad & Mahmoud Barakat & Bojan Rosi, 2023. "Blockchain Technology Adoption for Improved Environmental Supply Chain Performance: The Mediation Effect of Supply Chain Resilience, Customer Integration, and Green Customer Information Sharing," Sustainability, MDPI, vol. 15(10), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fanzo, Jessica & Haddad, Lawrence & Schneider, Kate R. & Béné, Christophe & Covic, Namukolo M. & Guarin, Alejandro & Herforth, Anna W. & Herrero, Mario & Sumaila, U. Rashid & Aburto, Nancy J. & Amuyun, 2021. "Viewpoint: Rigorous monitoring is necessary to guide food system transformation in the countdown to the 2030 global goals," Food Policy, Elsevier, vol. 104(C).
    2. Carina Mueller & Christopher West & Mairon G. Bastos Lima & Bob Doherty, 2023. "Demand-Side Actors in Agricultural Supply Chain Sustainability: An Assessment of Motivations for Action, Implementation Challenges, and Research Frontiers," World, MDPI, vol. 4(3), pages 1-20, September.
    3. Aditi S. Saha & Rakesh D. Raut & Vinay Surendra Yadav & Abhijit Majumdar, 2022. "Blockchain Changing the Outlook of the Sustainable Food Supply Chain to Achieve Net Zero?," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
    4. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2020. "The Unknown Potential of Blockchain for Sustainable Supply Chains," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    5. Biman Darshana Hettiarachchi & Stefan Seuring & Marcus Brandenburg, 2022. "Industry 4.0-driven operations and supply chains for the circular economy: a bibliometric analysis," Operations Management Research, Springer, vol. 15(3), pages 858-878, December.
    6. Antonello Cammarano & Vincenzo Varriale & Francesca Michelino & Mauro Caputo, 2023. "Blockchain as enabling factor for implementing RFID and IoT technologies in VMI: a simulation on the Parmigiano Reggiano supply chain," Operations Management Research, Springer, vol. 16(2), pages 726-754, June.
    7. Montecchi, Matteo & Plangger, Kirk & West, Douglas C., 2021. "Supply chain transparency: A bibliometric review and research agenda," International Journal of Production Economics, Elsevier, vol. 238(C).
    8. Büşra Ayan & Elif Güner & Semen Son-Turan, 2022. "Blockchain Technology and Sustainability in Supply Chains and a Closer Look at Different Industries: A Mixed Method Approach," Logistics, MDPI, vol. 6(4), pages 1-39, December.
    9. Xiangzhen Peng & Xin Zhang & Xiaoyi Wang & Haisheng Li & Jiping Xu & Zhiyao Zhao, 2022. "Multi-Chain Collaboration-Based Information Management and Control for the Rice Supply Chain," Agriculture, MDPI, vol. 12(5), pages 1-26, May.
    10. Tsolakis, Naoum & Niedenzu, Denis & Simonetto, Melissa & Dora, Manoj & Kumar, Mukesh, 2021. "Supply network design to address United Nations Sustainable Development Goals: A case study of blockchain implementation in Thai fish industry," Journal of Business Research, Elsevier, vol. 131(C), pages 495-519.
    11. Mangla, Sachin Kumar & Kazancoglu, Yigit & Ekinci, Esra & Liu, Mengqi & Özbiltekin, Melisa & Sezer, Muruvvet Deniz, 2021. "Using system dynamics to analyze the societal impacts of blockchain technology in milk supply chainsrefer," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    12. Hana Trollman & Guillermo Garcia-Garcia & Sandeep Jagtap & Frank Trollman, 2022. "Blockchain for Ecologically Embedded Coffee Supply Chains," Logistics, MDPI, vol. 6(3), pages 1-17, June.
    13. Ysé Commandré & Catherine Macombe & Sophie Mignon, 2021. "Implications for Agricultural Producers of Using Blockchain for Food Transparency, Study of 4 Food Chains by Cumulative Approach," Sustainability, MDPI, vol. 13(17), pages 1-22, September.
    14. Teck Ming Tan & Jari Salo, 2023. "Ethical Marketing in the Blockchain-Based Sharing Economy: Theoretical Integration and Guiding Insights," Journal of Business Ethics, Springer, vol. 183(4), pages 1113-1140, April.
    15. Fosso Wamba, Samuel & Queiroz, Maciel M. & Trinchera, Laura, 2020. "Dynamics between blockchain adoption determinants and supply chain performance: An empirical investigation," International Journal of Production Economics, Elsevier, vol. 229(C).
    16. Makarenko, Inna & Plastun, Alex & Mazancovа, Jana & Juhaszova, Zuzana & Brin, Pavlo, 2022. "Transparency of agriculture companies: rationale of responsible investment for better decision making under sustainability," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 8(2), June.
    17. Moritz Böhmecke‐Schwafert & Marie Wehinger & Robin Teigland, 2022. "Blockchain for the circular economy: Theorizing blockchain's role in the transition to a circular economy through an empirical investigation," Business Strategy and the Environment, Wiley Blackwell, vol. 31(8), pages 3786-3801, December.
    18. Atanu Chaudhuri & Manjot Singh Bhatia & Yasanur Kayikci & Kiran J. Fernandes & Samuel Fosso-Wamba, 2023. "Improving social sustainability and reducing supply chain risks through blockchain implementation: role of outcome and behavioural mechanisms," Annals of Operations Research, Springer, vol. 327(1), pages 401-433, August.
    19. Büyüközkan, Gülçin & Tüfekçi, Gizem & Uztürk, Deniz, 2021. "Evaluating Blockchain requirements for effective digital supply chain management," International Journal of Production Economics, Elsevier, vol. 242(C).
    20. Vineet Paliwal & Shalini Chandra & Suneel Sharma, 2020. "Blockchain Technology for Sustainable Supply Chain Management: A Systematic Literature Review and a Classification Framework," Sustainability, MDPI, vol. 12(18), pages 1-39, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7739-:d:847095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.