IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i8p4317-d535241.html
   My bibliography  Save this article

Benefits and Critical Knowledge Gaps in Determining the Role of Floating Photovoltaics in the Energy-Water-Food Nexus

Author

Listed:
  • Sika Gadzanku

    (National Renewable Energy Laboratory, Golden, CO 80401, USA)

  • Heather Mirletz

    (National Renewable Energy Laboratory, Golden, CO 80401, USA
    Advanced Energy Systems, Colorado School of Mines, Golden, CO 80401, USA)

  • Nathan Lee

    (National Renewable Energy Laboratory, Golden, CO 80401, USA)

  • Jennifer Daw

    (National Renewable Energy Laboratory, Golden, CO 80401, USA)

  • Adam Warren

    (National Renewable Energy Laboratory, Golden, CO 80401, USA
    Advanced Energy Systems, Colorado School of Mines, Golden, CO 80401, USA)

Abstract

Floating solar photovoltaic (FPV) systems have become an increasingly attractive application of photovoltaics (PV) because of land-use constraints, the cost of land and site preparation, and the perceived energy and environmental co-benefits. Despite the increasing interest in FPV systems, a robust validation of their suggested co-benefits and impacts on the nexus of energy, water, and food (EWF) systems is lacking. This information gap makes it challenging for decision makers to justify its adoption—potentially suppressing FPV deployment. To address this gap and to help de-risk this PV deployment opportunity, we (1) review the suggested co-benefits of FPV systems with a focus on the impacts that could alleviate pressures on EWF systems and (2) identify areas where further research is needed to reduce uncertainty around FPV system performance. Our review reveals that EWF nexus-relevant co-benefits, such as improved panel efficiency and reduced land usage, are corroborated in the literature, whereas others, such as water quality impacts, lack empirical evidence. Our findings indicate that further research is needed to quantify the water-related and broader economic, environmental, social, sustainability, justice, and resilience co-benefits and impacts of FPV systems.

Suggested Citation

  • Sika Gadzanku & Heather Mirletz & Nathan Lee & Jennifer Daw & Adam Warren, 2021. "Benefits and Critical Knowledge Gaps in Determining the Role of Floating Photovoltaics in the Energy-Water-Food Nexus," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4317-:d:535241
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/8/4317/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/8/4317/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harvey, Mark & Pilgrim, Sarah, 2011. "The new competition for land: Food, energy, and climate change," Food Policy, Elsevier, vol. 36(S1), pages 40-51.
    2. Redón Santafé, Miguel & Torregrosa Soler, Juan Bautista & Sánchez Romero, Francisco Javier & Ferrer Gisbert, Pablo S. & Ferrán Gozálvez, José Javier & Ferrer Gisbert, Carlos M., 2014. "Theoretical and experimental analysis of a floating photovoltaic cover for water irrigation reservoirs," Energy, Elsevier, vol. 67(C), pages 246-255.
    3. Sulaeman, Samer & Brown, Erik & Quispe-Abad, Raul & Müller, Norbert, 2021. "Floating PV system as an alternative pathway to the amazon dam underproduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Ravi, Sujith & Macknick, Jordan & Lobell, David & Field, Christopher & Ganesan, Karthik & Jain, Rishabh & Elchinger, Michael & Stoltenberg, Blaise, 2016. "Colocation opportunities for large solar infrastructures and agriculture in drylands," Applied Energy, Elsevier, vol. 165(C), pages 383-392.
    5. Taboada, M.E. & Cáceres, L. & Graber, T.A. & Galleguillos, H.R. & Cabeza, L.F. & Rojas, R., 2017. "Solar water heating system and photovoltaic floating cover to reduce evaporation: Experimental results and modeling," Renewable Energy, Elsevier, vol. 105(C), pages 601-615.
    6. Sahu, Alok & Yadav, Neha & Sudhakar, K., 2016. "Floating photovoltaic power plant: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 815-824.
    7. Lee, Nathan & Grunwald, Ursula & Rosenlieb, Evan & Mirletz, Heather & Aznar, Alexandra & Spencer, Robert & Cox, Sadie, 2020. "Hybrid floating solar photovoltaics-hydropower systems: Benefits and global assessment of technical potential," Renewable Energy, Elsevier, vol. 162(C), pages 1415-1427.
    8. Michelle T. H. van Vliet & David Wiberg & Sylvain Leduc & Keywan Riahi, 2016. "Power-generation system vulnerability and adaptation to changes in climate and water resources," Nature Climate Change, Nature, vol. 6(4), pages 375-380, April.
    9. Alexander E. Cagle & Alona Armstrong & Giles Exley & Steven M. Grodsky & Jordan Macknick & John Sherwin & Rebecca R. Hernandez, 2020. "The Land Sparing, Water Surface Use Efficiency, and Water Surface Transformation of Floating Photovoltaic Solar Energy Installations," Sustainability, MDPI, vol. 12(19), pages 1-22, October.
    10. Ferrer-Gisbert, Carlos & Ferrán-Gozálvez, José J. & Redón-Santafé, Miguel & Ferrer-Gisbert, Pablo & Sánchez-Romero, Francisco J. & Torregrosa-Soler, Juan Bautista, 2013. "A new photovoltaic floating cover system for water reservoirs," Renewable Energy, Elsevier, vol. 60(C), pages 63-70.
    11. Pringle, Adam M. & Handler, R.M. & Pearce, J.M., 2017. "Aquavoltaics: Synergies for dual use of water area for solar photovoltaic electricity generation and aquaculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 572-584.
    12. Harvey, Mark & Pilgrim, Sarah, 2011. "The new competition for land: Food, energy, and climate change," Food Policy, Elsevier, vol. 36(Supplemen), pages 40-51, January.
    13. Zhou, Yanlai & Chang, Fi-John & Chang, Li-Chiu & Lee, Wei-De & Huang, Angela & Xu, Chong-Yu & Guo, Shenglian, 2020. "An advanced complementary scheme of floating photovoltaic and hydropower generation flourishing water-food-energy nexus synergies," Applied Energy, Elsevier, vol. 275(C).
    14. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    15. Hernandez, R.R. & Easter, S.B. & Murphy-Mariscal, M.L. & Maestre, F.T. & Tavassoli, M. & Allen, E.B. & Barrows, C.W. & Belnap, J. & Ochoa-Hueso, R. & Ravi, S. & Allen, M.F., 2014. "Environmental impacts of utility-scale solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 766-779.
    16. Arman Aghahosseini & Dmitrii Bogdanov & Christian Breyer, 2017. "A Techno-Economic Study of an Entirely Renewable Energy-Based Power Supply for North America for 2030 Conditions," Energies, MDPI, vol. 10(8), pages 1-28, August.
    17. Gonzalez Sanchez, Rocio & Kougias, Ioannis & Moner-Girona, Magda & Fahl, Fernando & Jäger-Waldau, Arnulf, 2021. "Assessment of floating solar photovoltaics potential in existing hydropower reservoirs in Africa," Renewable Energy, Elsevier, vol. 169(C), pages 687-699.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Evgeny Solomin & Evgeny Sirotkin & Erdem Cuce & Shanmuga Priya Selvanathan & Sudhakar Kumarasamy, 2021. "Hybrid Floating Solar Plant Designs: A Review," Energies, MDPI, vol. 14(10), pages 1-25, May.
    2. Nobre, Regina & Boulêtreau, Stéphanie & Colas, Fanny & Azemar, Frederic & Tudesque, Loïc & Parthuisot, Nathalie & Favriou, Pierre & Cucherousset, Julien, 2023. "Potential ecological impacts of floating photovoltaics on lake biodiversity and ecosystem functioning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Evgeny Solomin & Evgeny Sirotkin & Erdem Cuce & Shanmuga Priya Selvanathan & Sudhakar Kumarasamy, 2021. "Hybrid Floating Solar Plant Designs: A Review," Energies, MDPI, vol. 14(10), pages 1-25, May.
    3. Vidović, V. & Krajačić, G. & Matak, N. & Stunjek, G. & Mimica, M., 2023. "Review of the potentials for implementation of floating solar panels on lakes and water reservoirs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    4. Alexander E. Cagle & Alona Armstrong & Giles Exley & Steven M. Grodsky & Jordan Macknick & John Sherwin & Rebecca R. Hernandez, 2020. "The Land Sparing, Water Surface Use Efficiency, and Water Surface Transformation of Floating Photovoltaic Solar Energy Installations," Sustainability, MDPI, vol. 12(19), pages 1-22, October.
    5. Kulat, Muhammed Imran & Tosun, Kursad & Karaveli, Abdullah Bugrahan & Yucel, Ismail & Akinoglu, Bulent Gultekin, 2023. "A sound potential against energy dependency and climate change challenges: Floating photovoltaics on water reservoirs of Turkey," Renewable Energy, Elsevier, vol. 206(C), pages 694-709.
    6. Ateş, Ali Murat, 2022. "Unlocking the floating photovoltaic potential of Türkiye's hydroelectric power plants," Renewable Energy, Elsevier, vol. 199(C), pages 1495-1509.
    7. Tercan, Emre & Dereli, Mehmet Ali & Saracoglu, Burak Omer, 2022. "Location alternatives generation and elimination of floatovoltaics with virtual power plant designs," Renewable Energy, Elsevier, vol. 193(C), pages 1150-1163.
    8. Kowsar, Abu & Hassan, Mahedi & Rana, Md Tasnim & Haque, Nawshad & Faruque, Md Hasan & Ahsan, Saifuddin & Alam, Firoz, 2023. "Optimization and techno-economic assessment of 50 MW floating solar power plant on Hakaluki marsh land in Bangladesh," Renewable Energy, Elsevier, vol. 216(C).
    9. Exley, G. & Hernandez, R.R. & Page, T. & Chipps, M. & Gambro, S. & Hersey, M. & Lake, R. & Zoannou, K.-S. & Armstrong, A., 2021. "Scientific and stakeholder evidence-based assessment: Ecosystem response to floating solar photovoltaics and implications for sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    10. Muñoz-Cerón, Emilio & Osorio-Aravena, Juan Carlos & Rodríguez-Segura, Francisco Javier & Frolova, Marina & Ruano-Quesada, Antonio, 2023. "Floating photovoltaics systems on water irrigation ponds: Technical potential and multi-benefits analysis," Energy, Elsevier, vol. 271(C).
    11. Koami Soulemane Hayibo & Pierce Mayville & Ravneet Kaur Kailey & Joshua M. Pearce, 2020. "Water Conservation Potential of Self-Funded Foam-Based Flexible Surface-Mounted Floatovoltaics," Energies, MDPI, vol. 13(23), pages 1-24, November.
    12. Fereshtehpour, Mohammad & Javidi Sabbaghian, Reza & Farrokhi, Ali & Jovein, Ehsan Bahrami & Ebrahimi Sarindizaj, Elham, 2021. "Evaluation of factors governing the use of floating solar system: A study on Iran’s important water infrastructures," Renewable Energy, Elsevier, vol. 171(C), pages 1171-1187.
    13. Kakoulaki, G. & Gonzalez Sanchez, R. & Gracia Amillo, A. & Szabo, S. & De Felice, M. & Farinosi, F. & De Felice, L. & Bisselink, B. & Seliger, R. & Kougias, I. & Jaeger-Waldau, A., 2023. "Benefits of pairing floating solar photovoltaics with hydropower reservoirs in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    14. Lee, Nathan & Grunwald, Ursula & Rosenlieb, Evan & Mirletz, Heather & Aznar, Alexandra & Spencer, Robert & Cox, Sadie, 2020. "Hybrid floating solar photovoltaics-hydropower systems: Benefits and global assessment of technical potential," Renewable Energy, Elsevier, vol. 162(C), pages 1415-1427.
    15. Claus, R. & López, M., 2022. "Key issues in the design of floating photovoltaic structures for the marine environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    16. Moraes, Camile A. & Valadão, Giovana F. & Renato, Natalia S. & Botelho, Daniel F. & Oliveira, Augusto C. L. de & Aleman, Catariny C. & Cunha, Fernando F., 2022. "Floating photovoltaic plants as an electricity supply option in the Tocantins-Araguaia basin," Renewable Energy, Elsevier, vol. 193(C), pages 264-277.
    17. Padilha Campos Lopes, Mariana & Nogueira, Tainan & Santos, Alberto José Leandro & Castelo Branco, David & Pouran, Hamid, 2022. "Technical potential of floating photovoltaic systems on artificial water bodies in Brazil," Renewable Energy, Elsevier, vol. 181(C), pages 1023-1033.
    18. Sulaeman, Samer & Brown, Erik & Quispe-Abad, Raul & Müller, Norbert, 2021. "Floating PV system as an alternative pathway to the amazon dam underproduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. Dai, Jian & Zhang, Chi & Lim, Han Vincent & Ang, Kok Keng & Qian, Xudong & Wong, Johnny Liang Heng & Tan, Sze Tiong & Wang, Chien Looi, 2020. "Design and construction of floating modular photovoltaic system for water reservoirs," Energy, Elsevier, vol. 191(C).
    20. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4317-:d:535241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.