IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p2009-d498655.html
   My bibliography  Save this article

Behavior Evolution of Multi-Group in the Process of Pedestrian Crossing Based on Evolutionary Game Theory

Author

Listed:
  • Ran Zhang

    (Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China)

  • Zhonghua Wei

    (Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China)

  • Heng Gu

    (Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China)

  • Shi Qiu

    (School of Civil Engineering, Central South University, Changsha 410083, China)

Abstract

The mixed traffic flow has an increasingly impact on the operation of urban traffic. To study the evolution law of multi-group behaviors in pedestrian crossing, we used the evolutionary game theory to establish a multi-group behavior evolution model for pedestrian crossing. The process of concern started from the risk perception and multi-group behavior choice. The evolutionary stability strategies, evolution trends, and factors affecting the evolutionary path of multi-group behaviors are discussed in this paper. This study found that evolutionary strategy equilibrium of pedestrians, drivers, and traffic managers not only relied on their own earning, but also on those of the other two groups. The factors affecting its behavior included the revenue factor and the limiting factor. Evolutionary game theory was used to analyze the multi-group interaction behavior of pedestrians, vehicle drivers, and traffic managers in the process of pedestrian crossing, as well as to analyze the behavior of traffic subjects in the process of pedestrian crossing. This paper provides a basis for decision-making for the traffic management department to manage road traffic, offering a new idea from the perspective of evolution for solving the conflict of interest at the crosswalk of the road section.

Suggested Citation

  • Ran Zhang & Zhonghua Wei & Heng Gu & Shi Qiu, 2021. "Behavior Evolution of Multi-Group in the Process of Pedestrian Crossing Based on Evolutionary Game Theory," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2009-:d:498655
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/2009/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/2009/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sanghamitra Das & Charles F. Manski & Mark D. Manuszak, 2005. "Walk or wait? An empirical analysis of street crossing decisions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(4), pages 529-548, May.
    2. Hyung Min Kim & Iderlina Mateo-Babiano, 2018. "Pedestrian Crossing Environments in an Emerging Chinese City: Vehicle Encountering, Seamless Walking, and Sensory Perception Perspectives," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    3. Jeongyun Kim & Sehyun Tak & Michel Bierlaire & Hwasoo Yeo, 2020. "Trajectory Data Analysis on the Spatial and Temporal Influence of Pedestrian Flow on Path Planning Decision," Sustainability, MDPI, vol. 12(24), pages 1-16, December.
    4. Wafaa Saleh & Monika Grigorova & Samia Elattar, 2020. "Pedestrian Road Crossing at Uncontrolled Mid-Block Locations: Does the Refuge Island Increase Risk?," Sustainability, MDPI, vol. 12(12), pages 1-16, June.
    5. Tian, Huan-huan & He, Hong-di & Wei, Yan-fang & Yu, Xue & Lu, Wei-zhen, 2009. "Lattice hydrodynamic model with bidirectional pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2895-2902.
    6. Avineri, Erel & Shinar, David & Susilo, Yusak O., 2011. "Pedestrians’ behaviour in cross walks: The effects of fear of falling and age," Working papers in Transport Economics 2011:18, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    7. Wang, Yongjie & Shen, Binchang & Wu, Hao & Wang, Chao & Su, Qian & Chen, Wenqiang, 2021. "Modeling illegal pedestrian crossing behaviors at unmarked mid-block roadway based on extended decision field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rongjun, Cheng & Hongxia, Ge & Jufeng, Wang, 2018. "The nonlinear analysis for a new continuum model considering anticipation and traffic jerk effect," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 493-505.
    2. Wang, Jufeng & Sun, Fengxin & Ge, Hongxia, 2019. "An improved lattice hydrodynamic model considering the driver’s desire of driving smoothly," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 119-129.
    3. Sun, Qipeng & Cheng, Qianqian & Wang, Yongjie & Li, Tao & Ma, Fei & Yao, Zhigang, 2022. "Zip-merging behavior at Y-intersection based on intelligent travel points," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    4. Wafaa Saleh & Monika Grigorova & Samia Elattar, 2020. "Pedestrian Road Crossing at Uncontrolled Mid-Block Locations: Does the Refuge Island Increase Risk?," Sustainability, MDPI, vol. 12(12), pages 1-16, June.
    5. Yuan, Zijian & Wang, Tao & Zhang, Jing & Li, Shubin, 2022. "Influences of dynamic safe headway on car-following behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    6. Zheng, Yinan & Elefteriadou, Lily, 2017. "A model of pedestrian delay at unsignalized intersections in urban networks," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 138-155.
    7. Sun, Qipeng & Liu, Hang & Wang, Yongjie & Li, Qiong & Chen, Wenqiang & Bai, Pengxia & Xue, Chenlei, 2022. "Cooperation in the jaywalking dilemma of a road public good due to points guidance," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    8. Wang, Jufeng & Sun, Fengxin & Ge, Hongxia, 2018. "Effect of the driver’s desire for smooth driving on the car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 96-108.
    9. Saberi, Meead & Aghabayk, Kayvan & Sobhani, Amir, 2015. "Spatial fluctuations of pedestrian velocities in bidirectional streams: Exploring the effects of self-organization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 120-128.
    10. Zhou, Jibiao & Chen, Siyuan & Ma, Changxi & Dong, Sheng, 2022. "Stability analysis of pedestrian traffic flow in horizontal channels: A numerical simulation method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    11. Yang, Jianguo & Deng, Wen & Wang, Jinmei & Li, Qingfeng & Wang, Zhaoan, 2006. "Modeling pedestrians' road crossing behavior in traffic system micro-simulation in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(3), pages 280-290, March.
    12. Wang, Tao & Li, Guangyao & Zhang, Jing & Li, Shubin & Sun, Tao, 2019. "The effect of Headway Variation Tendency on traffic flow: Modeling and stabilization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 566-575.
    13. Qingtao, Zhai & Hongxia, Ge & Rongjun, Cheng, 2018. "An extended continuum model considering optimal velocity change with memory and numerical tests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 774-785.
    14. Chen, Binbin & Li, Wei, 2022. "Improving highway traffic performance: Merging pattern design of a departure zone after tollbooths or ETC," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    15. Avineri, Erel & Shinar, David & Susilo, Yusak O., 2011. "Pedestrians’ behaviour in cross walks: The effects of fear of falling and age," Working papers in Transport Economics 2011:18, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    16. Henein, Colin Marc & White, Tony, 2010. "Microscopic information processing and communication in crowd dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4636-4653.
    17. Wang, Jufeng & Sun, Fengxin & Cheng, Rongjun & Ge, Hongxia, 2018. "An extended car-following model considering the self-stabilizing driving behavior of headway," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 347-357.
    18. Zhai, Cong & Wu, Weitiao & Xiao, Yingping, 2023. "The jamming transition of multi-lane lattice hydrodynamic model with passing effect," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    19. Jiang, Changtao & Cheng, Rongjun & Ge, Hongxia, 2018. "Effects of speed deviation and density difference in traffic lattice hydrodynamic model with interruption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 900-908.
    20. Tu, Lihua & Zhou, Jie, 2019. "Memory’s effect on bidirectional pedestrian flow based on lattice hydrodynamic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2009-:d:498655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.