IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p1916-d497408.html
   My bibliography  Save this article

Understanding Green Street Design: Evidence from Three Cases in the U.S

Author

Listed:
  • Alvaro Rodriguez-Valencia

    (Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1E N° 19A-40, 111711 Bogotá, Colombia
    Sostenibilidad Urbana y Regional (SUR) Research Group, Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1E N° 19A-40, 111711 Bogotá, Colombia)

  • Hernan A. Ortiz-Ramirez

    (Sostenibilidad Urbana y Regional (SUR) Research Group, Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1E N° 19A-40, 111711 Bogotá, Colombia)

Abstract

World cities need more green areas to promote social, economic, and environmental well-being; the problem, however, is that the space available for green infrastructure (GI) within the built environment is limited. Finding empty, free, or underutilized spaces within the built environment to be repurposed for GI has been a challenge. Streets are public, numerous, and evenly distributed, being a desirable place to fulfill this requirement. However, they are also heavily regulated public spaces, where design is standardized, and ruled by codes and manuals. Some cities in the US have implemented an increasing number of green streets (green infrastructures within the rights-of-way with environmental purposes), because of green stormwater management federal policies. This paper aims to understand the green street design procedure, based on empirical evidence. Three cities were studied (Portland, Seattle, and Philadelphia) by means of documentary information, visual inspections, and interviews. It is of special interest to unveil how traditional street design has been modified to adopt these new green elements within rights-of-way (ROW). Results show a longer and more complex street design process for green streets, where many more disciplines intervene. These results are discussed in the light of recent movements and trends in street design.

Suggested Citation

  • Alvaro Rodriguez-Valencia & Hernan A. Ortiz-Ramirez, 2021. "Understanding Green Street Design: Evidence from Three Cases in the U.S," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1916-:d:497408
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/1916/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/1916/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kaeren van Vliet & Catherine Hammond, 2021. "Residents’ perceptions of green infrastructure in the contemporary residential context: a study of Kingswood, Kingston-upon-Hull, England," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 64(1), pages 145-163, January.
    2. Lynn Mandarano & Kurt Paulsen, 2011. "Governance capacity in collaborative watershed partnerships: evidence from the Philadelphia region," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 54(10), pages 1293-1313.
    3. Nancy Hui & Shoshanna Saxe & Matthew Roorda & Paul Hess & Eric J. Miller, 2018. "Measuring the completeness of complete streets," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 73-95, January.
    4. Sebastiani, A. & Buonocore, E. & Franzese, P.P. & Riccio, A. & Chianese, E. & Nardella, L. & Manes, F., 2021. "Modeling air quality regulation by green infrastructure in a Mediterranean coastal urban area: The removal of PM10 in the Metropolitan City of Naples (Italy)," Ecological Modelling, Elsevier, vol. 440(C).
    5. Tyrvainen, Liisa & Miettinen, Antti, 2000. "Property Prices and Urban Forest Amenities," Journal of Environmental Economics and Management, Elsevier, vol. 39(2), pages 205-223, March.
    6. Banister, David, 2008. "The sustainable mobility paradigm," Transport Policy, Elsevier, vol. 15(2), pages 73-80, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantinos Kokkinos & Eftihia Nathanail, 2023. "A Fuzzy Cognitive Map and PESTEL-Based Approach to Mitigate CO 2 Urban Mobility: The Case of Larissa, Greece," Sustainability, MDPI, vol. 15(16), pages 1-30, August.
    2. Francesco Alberti, 2023. "Regenerative Streets: Pathways towards the Post-Automobile City," Sustainability, MDPI, vol. 15(13), pages 1-23, June.
    3. Fu Wang & Chang Tan & Miaohan Li & Dengjun Gu & Huini Wang, 2022. "Research on Traffic Design of Urban Vital Streets," Sustainability, MDPI, vol. 14(11), pages 1-29, May.
    4. Ying Zheng & Greg Keeffe & Jasna Mariotti, 2023. "Nature-Based Solutions for Cooling in High-Density Neighbourhoods in Shenzhen: A Case Study of Baishizhou," Sustainability, MDPI, vol. 15(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marleau Donais, Francis & Abi-Zeid, Irène & Waygood, E. Owen D. & Lavoie, Roxane, 2019. "Assessing and ranking the potential of a street to be redesigned as a Complete Street: A multi-criteria decision aiding approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 1-19.
    2. Saujot, Mathieu & Lefèvre, Benoit, 2016. "The next generation of urban MACCs. Reassessing the cost-effectiveness of urban mitigation options by integrating a systemic approach and social costs," Energy Policy, Elsevier, vol. 92(C), pages 124-138.
    3. Busscher, Tim & Tillema, Taede & Arts, Jos, 2015. "In search of sustainable road infrastructure planning: How can we build on historical policy shifts?," Transport Policy, Elsevier, vol. 42(C), pages 42-51.
    4. Thomas Vanoutrive & Ann Verhetsel, 2013. "Classifying transport studies using three dimensions of society: market structure, sustainability and decision making," Chapters, in: Thomas Vanoutrive & Ann Verhetsel (ed.), Smart Transport Networks, chapter 1, pages 1-8, Edward Elgar Publishing.
    5. Tornberg, Patrik & Odhage, John, 2018. "Making transport planning more collaborative? The case of Strategic Choice of Measures in Swedish transport planning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 416-429.
    6. Idiano D'Adamo & Massimo Gastaldi & Ilhan Ozturk, 2023. "The sustainable development of mobility in the green transition: Renewable energy, local industrial chain, and battery recycling," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 840-852, April.
    7. Gössling, Stefan, 2016. "Urban transport justice," Journal of Transport Geography, Elsevier, vol. 54(C), pages 1-9.
    8. Cavoli, Clemence, 2021. "Accelerating sustainable mobility and land-use transitions in rapidly growing cities: Identifying common patterns and enabling factors," Journal of Transport Geography, Elsevier, vol. 94(C).
    9. Allard, Ryan F. & Moura, Filipe, 2018. "Effect of transport transfer quality on intercity passenger mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 109(C), pages 89-107.
    10. Romanika Okraszewska & Aleksandra Romanowska & Marcin Wołek & Jacek Oskarbski & Krystian Birr & Kazimierz Jamroz, 2018. "Integration of a Multilevel Transport System Model into Sustainable Urban Mobility Planning," Sustainability, MDPI, vol. 10(2), pages 1-20, February.
    11. Combs, Tabitha S., 2017. "Examining changes in travel patterns among lower wealth households after BRT investment in Bogotá, Colombia," Journal of Transport Geography, Elsevier, vol. 60(C), pages 11-20.
    12. Caruso, Geoffrey & Peeters, Dominique & Cavailhes, Jean & Rounsevell, Mark, 2007. "Spatial configurations in a periurban city. A cellular automata-based microeconomic model," Regional Science and Urban Economics, Elsevier, vol. 37(5), pages 542-567, September.
    13. Alexandros Nikitas, 2019. "How to Save Bike-Sharing: An Evidence-Based Survival Toolkit for Policy-Makers and Mobility Providers," Sustainability, MDPI, vol. 11(11), pages 1-17, June.
    14. Tomasz Bieliński & Łukasz Dopierała & Maciej Tarkowski & Agnieszka Ważna, 2020. "Lessons from Implementing a Metropolitan Electric Bike Sharing System," Energies, MDPI, vol. 13(23), pages 1-21, November.
    15. Bayissa Badada Badassa & Baiqing Sun & Lixin Qiao, 2020. "Sustainable Transport Infrastructure and Economic Returns: A Bibliometric and Visualization Analysis," Sustainability, MDPI, vol. 12(5), pages 1-24, March.
    16. Banister, David, 2011. "The trilogy of distance, speed and time," Journal of Transport Geography, Elsevier, vol. 19(4), pages 950-959.
    17. Jokinen, Jani-Pekka & Sihvola, Teemu & Mladenovic, Milos N., 2019. "Policy lessons from the flexible transport service pilot Kutsuplus in the Helsinki Capital Region," Transport Policy, Elsevier, vol. 76(C), pages 123-133.
    18. Harry Geerlings & Bart Kuipers, 2013. "Smart governance and the management of sustainable mobility: an illustration of the application of policy integration and transition management in the Port of Rotterdam," Chapters, in: Thomas Vanoutrive & Ann Verhetsel (ed.), Smart Transport Networks, chapter 11, pages 224-247, Edward Elgar Publishing.
    19. Ahmet Tolunay & Çağlar Başsüllü, 2015. "Willingness to Pay for Carbon Sequestration and Co-Benefits of Forests in Turkey," Sustainability, MDPI, vol. 7(3), pages 1-27, March.
    20. Hopkins, Debbie & Stephenson, Janet, 2014. "Generation Y mobilities through the lens of energy cultures: a preliminary exploration of mobility cultures," Journal of Transport Geography, Elsevier, vol. 38(C), pages 88-91.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1916-:d:497408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.