IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p1876-d496485.html
   My bibliography  Save this article

Provincial CO 2 Emission Measurement and Analysis of the Construction Industry under China’s Carbon Neutrality Target

Author

Listed:
  • Yuanying Chi

    (School of Economics and Management, Beijing University of Technology, Beijing 100124, China
    Energy Policy Research Center, Beijing University of Technology, Beijing 100124, China)

  • Zerun Liu

    (School of Economics and Management, Beijing University of Technology, Beijing 100124, China
    Energy Policy Research Center, Beijing University of Technology, Beijing 100124, China)

  • Xu Wang

    (School of Economics and Management, Beijing University of Technology, Beijing 100124, China
    Energy Policy Research Center, Beijing University of Technology, Beijing 100124, China)

  • Yangyi Zhang

    (Energy Policy Research Center, Beijing University of Technology, Beijing 100124, China)

  • Fang Wei

    (School of Fundamental Sciences, China Medical University, Shenyang 110122, China)

Abstract

The construction industry plays a crucial role in China’s fulfillment of the goal of achieving “carbon neutrality” in 2060. Based on the data of energy and building materials consumption of the construction industry in China and 30 provinces from 2008 to 2018, this paper constructs a model for measuring provincial CO 2 emissions of China’s construction industry and establishes a Kuznets curve and elastic decoupling model of the industry’s CO 2 emissions. The analysis based on the models shows that: (1) the CO 2 emissions of China’s construction industry show a trend of increasing first and then decreasing; (2) in terms of the decoupling effects, most provinces are in a weak decoupling status of CO 2 emissions; and (3) the Kuznets curve of the provincial construction industry shows an inverted “U” shape in recent years, and it is predicted that the CO 2 emissions of the construction industry will reach the peak in 2034. It is possible for the construction industry to achieve “carbon neutrality”, but long-term efforts must be made for strategic planning, policies and regulations, industry standards, etc.

Suggested Citation

  • Yuanying Chi & Zerun Liu & Xu Wang & Yangyi Zhang & Fang Wei, 2021. "Provincial CO 2 Emission Measurement and Analysis of the Construction Industry under China’s Carbon Neutrality Target," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1876-:d:496485
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/1876/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/1876/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    2. Yan Wang & Tao Zhou & Hao Chen & Zhihai Rong, 2019. "Environmental Homogenization or Heterogenization? The Effects of Globalization on Carbon Dioxide Emissions, 1970–2014," Sustainability, MDPI, vol. 11(10), pages 1-23, May.
    3. Awaworyi Churchill, Sefa & Inekwe, John & Ivanovski, Kris & Smyth, Russell, 2020. "The Environmental Kuznets Curve across Australian states and territories," Energy Economics, Elsevier, vol. 90(C).
    4. Yan-Qing Kang & Tao Zhao & Peng Wu, 2016. "Impacts of energy-related CO2 emissions in China: a spatial panel data technique," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 405-421, March.
    5. Shafik, Nemat & Bandyopadhyay, Sushenjit, 1992. "Economic growth and environmental quality : time series and cross-country evidence," Policy Research Working Paper Series 904, The World Bank.
    6. Song, Yan & Sun, Junjie & Zhang, Ming & Su, Bin, 2020. "Using the Tapio-Z decoupling model to evaluate the decoupling status of China's CO2 emissions at provincial level and its dynamic trend," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 120-129.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, He & Chen, Huayu & Ning, Pei & Liang, Junhui & Yao, Xin & Gao, Yanfang & Byambatsogt, Pashka & Qin, Laishun & Huang, Yuexiang & Chen, Da, 2022. "Boosting photocatalytic hydrogen evolution over 2D/0D graphene/H–In2O3 nanohybrids with regulated oxygen vacancies," Renewable Energy, Elsevier, vol. 194(C), pages 868-874.
    2. Hanli Chen & Chunmei Lu, 2023. "Research on the Spatial Effect and Threshold Characteristics of New-Type Urbanization on Carbon Emissions in China’s Construction Industry," Sustainability, MDPI, vol. 15(22), pages 1-26, November.
    3. Wang, Xiaoling & Zhang, Tianyue & Nathwani, Jatin & Yang, Fangming & Shao, Qinglong, 2022. "Environmental regulation, technology innovation, and low carbon development: Revisiting the EKC Hypothesis, Porter Hypothesis, and Jevons’ Paradox in China's iron & steel industry," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    4. Chen, Ya & Pan, Yongbin & Wang, Mengyuan & Ding, Tao & Zhou, Zhixiang & Wang, Ke, 2023. "How do industrial sectors contribute to carbon peaking and carbon neutrality goals? A heterogeneous energy efficiency analysis for Beijing," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 67-80.
    5. Li, Hongwei & Zhang, Rongjun & Wang, Tianye & Wu, Yu & Xu, Run & Wang, Qiang & Tang, Zhigang, 2022. "Performance evaluation and environment risk assessment of steel slag enhancement for seawater to capture CO2," Energy, Elsevier, vol. 238(PB).
    6. Jingyu Ji & Hang Lin, 2022. "Evaluating Regional Carbon Inequality and Its Dependence with Carbon Efficiency: Implications for Carbon Neutrality," Energies, MDPI, vol. 15(19), pages 1-35, September.
    7. Xiaodong Hu & Ximing Zhang & Lei Dong & Hujun Li & Zheng He & Huihua Chen, 2022. "Carbon Emission Factors Identification and Measurement Model Construction for Railway Construction Projects," IJERPH, MDPI, vol. 19(18), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saptorshee Kanto Chakraborty & Massimiliano Mazzanti, 2021. "Revisiting the literature on the dynamic Environmental Kuznets Curves using a latent structure approach," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 38(3), pages 923-941, October.
    2. Sinha, Avik & Shahbaz, Muhammad & Balsalobre, Daniel, 2017. "Exploring the Relationship between Energy Usage Segregation and Environmental Degradation in N-11 Countries," MPRA Paper 81212, University Library of Munich, Germany, revised 07 Sep 2017.
    3. Pei-Zhi Liu & Seema Narayan & Yi-Shuai Ren & Yong Jiang & Konstantinos Baltas & Basil Sharp, 2022. "Re-Examining the Income–CO 2 Emissions Nexus Using the New Kink Regression Model: Does the Kuznets Curve Exist in G7 Countries?," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    4. Song, Tao & Zheng, Tingguo & Tong, Lianjun, 2008. "An empirical test of the environmental Kuznets curve in China: A panel cointegration approach," China Economic Review, Elsevier, vol. 19(3), pages 381-392, September.
    5. Bradford David F. & Fender Rebecca A & Shore Stephen H. & Wagner Martin, 2005. "The Environmental Kuznets Curve: Exploring a Fresh Specification," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 4(1), pages 1-30, June.
    6. Muhammad Shahbaz & Syed Jawad Hussain Shahzad & Mantu Kumar Mahalik & Perry Sadorsky, 2018. "How strong is the causal relationship between globalization and energy consumption in developed economies? A country-specific time-series and panel analysis," Applied Economics, Taylor & Francis Journals, vol. 50(13), pages 1479-1494, March.
    7. Fabian Knorre & Martin Wagner & Maximilian Grupe, 2021. "Monitoring Cointegrating Polynomial Regressions: Theory and Application to the Environmental Kuznets Curves for Carbon and Sulfur Dioxide Emissions," Econometrics, MDPI, vol. 9(1), pages 1-35, March.
    8. C. Seri & A. de Juan Fernandez, 2021. "The relationship between economic growth and environment. Testing the EKC hypothesis for Latin American countries," Papers 2105.11405, arXiv.org.
    9. Rothman, Dale S., 1998. "Environmental Kuznets curves--real progress or passing the buck?: A case for consumption-based approaches," Ecological Economics, Elsevier, vol. 25(2), pages 177-194, May.
    10. B. Venkatraja, 2021. "Does China exhibit any evidence of an Environmental Kuznets Curve? An ARDL bounds testing approach," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 1, pages 88-110,111-.
    11. Alvarez-Herranz, Agustin & Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Cantos, José María, 2017. "Energy innovation and renewable energy consumption in the correction of air pollution levels," Energy Policy, Elsevier, vol. 105(C), pages 386-397.
    12. Ajanaku, B.A. & Collins, A.R., 2021. "Economic growth and deforestation in African countries: Is the environmental Kuznets curve hypothesis applicable?," Forest Policy and Economics, Elsevier, vol. 129(C).
    13. Shahbaz, Muhammad & Nasreen, Samia & Ahmed, Khalid & Hammoudeh, Shawkat, 2017. "Trade openness–carbon emissions nexus: The importance of turning points of trade openness for country panels," Energy Economics, Elsevier, vol. 61(C), pages 221-232.
    14. Baiardi Donatella, 2014. "Technological Progress and the Environmental Kuznets Curve in the Twenty Regions of Italy," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 14(4), pages 1-42, October.
    15. Mary O. Agboola & Festus V. Bekun, 2019. "Does Agricultural Value Added Induce Environmental Degradation? Empirical Evidence from an Agrarian Country," CEREDEC Working Papers 19/040, Centre de Recherche pour le Développement Economique (CEREDEC).
    16. Richard T. Carson, 2010. "The Environmental Kuznets Curve: Seeking Empirical Regularity and Theoretical Structure," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 4(1), pages 3-23, Winter.
    17. Jayanthakumaran, Kankesu & Verma, Reetu & Liu, Ying, 2012. "CO2 emissions, energy consumption, trade and income: A comparative analysis of China and India," Energy Policy, Elsevier, vol. 42(C), pages 450-460.
    18. Wang, Sophie Xuefei & Fu, Yu Benjamin & Zhang, Zhe George, 2015. "Population growth and the environmental Kuznets curve," China Economic Review, Elsevier, vol. 36(C), pages 146-165.
    19. Roca, Jordi & Serrano, Monica, 2007. "Income growth and atmospheric pollution in Spain: An input-output approach," Ecological Economics, Elsevier, vol. 63(1), pages 230-242, June.
    20. Md Danesh Miah & Md Farhad Hossain Masum & Masao Koike & Shalina Akther & Nur Muhammed, 2011. "Environmental Kuznets Curve: the case of Bangladesh for waste emission and suspended particulate matter," Environment Systems and Decisions, Springer, vol. 31(1), pages 59-66, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1876-:d:496485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.