IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i3p1571-d491986.html
   My bibliography  Save this article

Analyzing the Environmental Efficiency of Global Airlines by Continent for Sustainability

Author

Listed:
  • Hyunjung Kim

    (Division of Business and Commerce, Sunchon National University, 255 Jungang-ro, Suncheon, Jeollanam-do 57922, Korea)

  • Jiyoon Son

    (College of Business Administration, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea)

Abstract

The study of environmental sustainability in the aviation industry mainly focuses on research targeting specific regions such as the United States, Europe, and China. However, for the environmental sustainability of the aviation industry, global airlines on all continents around the world must implement efficient environmental management. This study divides the world into six continents and attempts to verify environmental efficiency for airlines belonging to each continent. Using data from 2014 to 2018 of 31 global airlines, this study compares environmental efficiency in the aviation industry by continent and individual airline. Data envelopment analysis (DEA), which is actively used in efficiency studies was adopted as an analysis method. We find that, first, airlines in Europe and Russia have the highest environmental efficiency, and airlines in North America and Canada are the second highest, which can be a good benchmark for other airlines. Second, in technical efficiency (TE) values, airlines in Africa and the Middle East and Latin America generally have low efficiency; but, in the airlines in Africa and the Middle East, environmental efficiency is steadily improving slightly. In comparison, airlines in Latin America showed a decrease in environmental efficiency value, requiring a lot of effort and investment to improve efficiency. Third, for airlines in North America and Canada, the scale efficiency (SE) value was the lowest, even though there was a high level of overall environmental efficiency, indicating the need for efficiency improvement through economies of scale. This study has implications, in that, it suggests how airlines can perform efficient environmental management for sustainability according to the continent to which they belong.

Suggested Citation

  • Hyunjung Kim & Jiyoon Son, 2021. "Analyzing the Environmental Efficiency of Global Airlines by Continent for Sustainability," Sustainability, MDPI, vol. 13(3), pages 1-16, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1571-:d:491986
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/3/1571/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/3/1571/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christopher Durugbo & Joseph Amankwah‐Amoah, 2019. "Global sustainability under uncertainty: How do multinationals craft regulatory policies?," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 26(6), pages 1500-1516, November.
    2. Banker, Rajiv D. & Thrall, R. M., 1992. "Estimation of returns to scale using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 62(1), pages 74-84, October.
    3. Amankwah-Amoah, Joseph, 2020. "Stepping Up and Stepping Out of COVID-19: New Challenges for Environmental Sustainability Policies in the Global Airline Industry," MPRA Paper 101491, University Library of Munich, Germany.
    4. Choi, Kanghwa, 2017. "Multi-period efficiency and productivity changes in US domestic airlines," Journal of Air Transport Management, Elsevier, vol. 59(C), pages 18-25.
    5. Lukas Steinmann & Peter Zweifel, 2001. "The Range Adjusted Measure (RAM) in DEA: Comment," Journal of Productivity Analysis, Springer, vol. 15(2), pages 139-144, March.
    6. Singh, Sanjay Kumar & Giudice, Manlio Del & Chierici, Roberto & Graziano, Domenico, 2020. "Green innovation and environmental performance: The role of green transformational leadership and green human resource management," Technological Forecasting and Social Change, Elsevier, vol. 150(C).
    7. Berger, Allen N. & Humphrey, David B., 1997. "Efficiency of financial institutions: International survey and directions for future research," European Journal of Operational Research, Elsevier, vol. 98(2), pages 175-212, April.
    8. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    9. Kamala kanta Muduli & Sunil Luthra & Sachin Kumar Mangla & Charbel Jose Chiappetta Jabbour & Satyabrata Aich & Julio Cesar Ferro de Guimarães, 2020. "Environmental management and the “soft side” of organisations: Discovering the most relevant behavioural factors in green supply chains," Business Strategy and the Environment, Wiley Blackwell, vol. 29(4), pages 1647-1665, May.
    10. Blomberg, Jerry & Henriksson, Eva & Lundmark, Robert, 2012. "Energy efficiency and policy in Swedish pulp and paper mills: A data envelopment analysis approach," Energy Policy, Elsevier, vol. 42(C), pages 569-579.
    11. Cui, Qiang & Li, Ye, 2015. "Evaluating energy efficiency for airlines: An application of VFB-DEA," Journal of Air Transport Management, Elsevier, vol. 44, pages 34-41.
    12. Arjomandi, Amir & Seufert, Juergen Heinz, 2014. "An evaluation of the world's major airlines' technical and environmental performance," Economic Modelling, Elsevier, vol. 41(C), pages 133-144.
    13. Qiang Cui & Ye Li, 2018. "Airline environmental efficiency measures considering materials balance principles: an application of a network range-adjusted measure with weak-G disposability," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 61(13), pages 2298-2318, November.
    14. Scheraga, Carl A., 2004. "Operational efficiency versus financial mobility in the global airline industry: a data envelopment and Tobit analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(5), pages 383-404, June.
    15. Cui, Qiang & Kuang, Hai-bo & Wu, Chun-you & Li, Ye, 2014. "The changing trend and influencing factors of energy efficiency: The case of nine countries," Energy, Elsevier, vol. 64(C), pages 1026-1034.
    16. Brueckner, Jan K. & Abreu, Chrystyane, 2017. "Airline fuel usage and carbon emissions: Determining factors," Journal of Air Transport Management, Elsevier, vol. 62(C), pages 10-17.
    17. Cui, Qiang & Wei, Yi-Ming & Li, Ye, 2016. "Exploring the impacts of the EU ETS emission limits on airline performance via the Dynamic Environmental DEA approach," Applied Energy, Elsevier, vol. 183(C), pages 984-994.
    18. William Cooper & Kyung Park & Jesus Pastor, 2001. "The Range Adjusted Measure (RAM) in DEA: A Response to the Comment by Steinmann and Zweifel," Journal of Productivity Analysis, Springer, vol. 15(2), pages 145-152, March.
    19. Yilmaz, Nadir & Atmanli, Alpaslan, 2017. "Sustainable alternative fuels in aviation," Energy, Elsevier, vol. 140(P2), pages 1378-1386.
    20. Anger, Annela & Köhler, Jonathan, 2010. "Including aviation emissions in the EU ETS: Much ado about nothing? A review," Transport Policy, Elsevier, vol. 17(1), pages 38-46, January.
    21. Canhoto, Ana & Dermine, Jean, 2003. "A note on banking efficiency in Portugal, New vs. Old banks," Journal of Banking & Finance, Elsevier, vol. 27(11), pages 2087-2098, November.
    22. Lee, Boon L. & Worthington, Andrew C., 2014. "Technical efficiency of mainstream airlines and low-cost carriers: New evidence using bootstrap data envelopment analysis truncated regression," Journal of Air Transport Management, Elsevier, vol. 38(C), pages 15-20.
    23. Cui, Qiang & Li, Ye, 2017. "Airline efficiency measures under CNG2020 strategy: An application of a Dynamic By-production model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 130-143.
    24. Liu, Xiao & Zhou, Dequn & Zhou, Peng & Wang, Qunwei, 2017. "Dynamic carbon emission performance of Chinese airlines: A global Malmquist index analysis," Journal of Air Transport Management, Elsevier, vol. 65(C), pages 99-109.
    25. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    26. Barros, Carlos P. & Liang, Qi Bin & Peypoch, Nicolas, 2013. "The technical efficiency of US Airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 139-148.
    27. Mallikarjun, Sreekanth, 2015. "Efficiency of US airlines: A strategic operating model," Journal of Air Transport Management, Elsevier, vol. 43(C), pages 46-56.
    28. Cui, Qiang & Jin, Zi-yin, 2020. "Airline environmental efficiency measures considering negative data: An application of a modified network Modified Slacks-based measure model," Energy, Elsevier, vol. 207(C).
    29. Xu, Xin & Cui, Qiang, 2017. "Evaluating airline energy efficiency: An integrated approach with Network Epsilon-based Measure and Network Slacks-based Measure," Energy, Elsevier, vol. 122(C), pages 274-286.
    30. Chia-Nan Wang & Tsang-Ta Tsai & Hsien-Pin Hsu & Le-Hoang Nguyen, 2019. "Performance Evaluation of Major Asian Airline Companies Using DEA Window Model and Grey Theory," Sustainability, MDPI, vol. 11(9), pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Qiang & Jia, Zi-ke, 2023. "Measuring the dynamic airline energy efficiency with non-homogeneous structures," Energy, Elsevier, vol. 266(C).
    2. Hashem Omrani & Meisam Shamsi & Ali Emrouznejad, 2023. "Evaluating sustainable efficiency of decision-making units considering undesirable outputs: an application to airline using integrated multi-objective DEA-TOPSIS," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 5899-5930, July.
    3. Yin Shi & Xiaoni Li & Maher Asal, 2023. "Impact of sustainability on financial distress in the air transport industry: the moderating effect of Asia–Pacific," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kottas, Angelos T. & Madas, Michael A., 2018. "Comparative efficiency analysis of major international airlines using Data Envelopment Analysis: Exploring effects of alliance membership and other operational efficiency determinants," Journal of Air Transport Management, Elsevier, vol. 70(C), pages 1-17.
    2. Cui, Qiang & Li, Ye, 2017. "Airline efficiency measures under CNG2020 strategy: An application of a Dynamic By-production model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 130-143.
    3. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2016. "Has airline efficiency affected by the inclusion of aviation into European Union Emission Trading Scheme? Evidences from 22 airlines during 2008–2012," Energy, Elsevier, vol. 96(C), pages 8-22.
    4. Cui, Qiang & Li, Ye, 2020. "A cross efficiency distinguishing method to explore the cooperation degree in dynamic airline environmental efficiency," Transport Policy, Elsevier, vol. 99(C), pages 31-43.
    5. Cui, Qiang & Li, Ye & Lin, Jing-ling, 2018. "Pollution abatement costs change decomposition for airlines: An analysis from a dynamic perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 96-107.
    6. Ye Li & Qiang Cui, 2017. "Airline energy efficiency measures using the Virtual Frontier Network RAM with weak disposability," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(4), pages 479-504, May.
    7. Seufert, Juergen Heinz & Arjomandi, Amir & Dakpo, K. Hervé, 2017. "Evaluating airline operational performance: A Luenberger-Hicks-Moorsteen productivity indicator," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 52-68.
    8. Losa, Eduardo Tola & Arjomandi, Amir & Hervé Dakpo, K. & Bloomfield, Jason, 2020. "Efficiency comparison of airline groups in Annex 1 and non-Annex 1 countries: A dynamic network DEA approach," Transport Policy, Elsevier, vol. 99(C), pages 163-174.
    9. Li, Ye & Cui, Qiang, 2018. "Investigating the role of cooperation in the GHG abatement costs of airlines under CNG2020 strategy via a DEA cross PAC model," Energy, Elsevier, vol. 161(C), pages 725-736.
    10. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2015. "Evaluating airline efficiency: An application of Virtual Frontier Network SBM," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 1-17.
    11. Cui, Qiang & Li, Ye, 2017. "Airline efficiency measures using a Dynamic Epsilon-Based Measure model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 121-134.
    12. Arjomandi, Amir & Dakpo, K. Hervé & Seufert, Juergen Heinz, 2018. "Have Asian airlines caught up with European Airlines? A by-production efficiency analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 389-403.
    13. Xu, Xin & Cui, Qiang, 2017. "Evaluating airline energy efficiency: An integrated approach with Network Epsilon-based Measure and Network Slacks-based Measure," Energy, Elsevier, vol. 122(C), pages 274-286.
    14. Cui, Qiang & Wei, Yi-Ming & Li, Ye, 2016. "Exploring the impacts of the EU ETS emission limits on airline performance via the Dynamic Environmental DEA approach," Applied Energy, Elsevier, vol. 183(C), pages 984-994.
    15. Kaya, Gizem & Aydın, Umut & Ülengin, Burç & Karadayı, Melis Almula & Ülengin, Füsun, 2023. "How do airlines survive? An integrated efficiency analysis on the survival of airlines," Journal of Air Transport Management, Elsevier, vol. 107(C).
    16. Wanke, Peter & Barros, C.P., 2016. "Efficiency in Latin American airlines: A two-stage approach combining Virtual Frontier Dynamic DEA and Simplex Regression," Journal of Air Transport Management, Elsevier, vol. 54(C), pages 93-103.
    17. Cui, Qiang, 2021. "A data-based comparison of the five undesirable output disposability approaches in airline environmental efficiency," Socio-Economic Planning Sciences, Elsevier, vol. 74(C).
    18. Cui, Qiang & Li, Ye & Yu, Chen-lu & Wei, Yi-Ming, 2016. "Evaluating energy efficiency for airlines: An application of Virtual Frontier Dynamic Slacks Based Measure," Energy, Elsevier, vol. 113(C), pages 1231-1240.
    19. Ying Li & Tai‐Yu Lin & Yung‐ho Chiu & Shu‐Ning Lin & Tzu‐Han Chang, 2021. "Impact of alliances and delay rate on airline performance," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 42(6), pages 1607-1618, September.
    20. Yu, Ming-Miin & Chang, Yu-Chun & Chen, Li-Hsueh, 2016. "Measurement of airlines’ capacity utilization and cost gap: Evidence from low-cost carriers," Journal of Air Transport Management, Elsevier, vol. 53(C), pages 186-198.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1571-:d:491986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.