IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i20p11522-d659248.html
   My bibliography  Save this article

Decision-Making Behavior Analysis and Empirical Study under Information Intervention in a Cold Environment

Author

Listed:
  • Wenbo Huang

    (Key Laboratory of Traffic Engineering, College Metropolitan Transportation, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China)

  • Yanyan Chen

    (Key Laboratory of Traffic Engineering, College Metropolitan Transportation, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China)

  • Shushan Chai

    (Research Institute for Road Safety of MPS, Beijing 100062, China)

Abstract

Some mega-sport events such as the Winter Olympics are usually held in areas accompanied by cold environment, which has a great risk of frostbite and safety for pedestrians. Releasing guidance information have become a good way for managers to reduce freezing time, improve travel efficiency and prevent safety accidents. In this article, the 2022 Winter Olympics were taken as an example to discuss influence of information intervention on TDMB (travel decision-making behavior). The mechanism of the TDMB was explored, and a survey of pedestrian behavior was carried out in the area. In particular, the influence of the subjective perception and objective factors on the RDMB (route decision-making behavior) was analyzed based on the SEM-logit model. The results show that information, congestion and the cold have an impact on the decision-making behavior. The path coefficient values of the pedestrians’ perception of information, congestion and the cold were 0.557, 0.216 and 0.324, respectively, which indicates that guidance information has the most serious impact on the pedestrians’ comprehensive perception. The objective factors including outdoor walking time, information intervention frequency, distance to a heated space had a significant impact on the RDMB. Indeed, when information intervention frequency is 2, the compliance rate of pedestrians to the information can be effectively increased. If the manager wants to alleviate traffic congestion, setting up heated spaces within a radius of 1 km is a good way to divert pedestrians. This study can provide a scientific reference for the sustainable development of mega-sport events, long-term construction of service facilities and the passenger flow management in a cold environment.

Suggested Citation

  • Wenbo Huang & Yanyan Chen & Shushan Chai, 2021. "Decision-Making Behavior Analysis and Empirical Study under Information Intervention in a Cold Environment," Sustainability, MDPI, vol. 13(20), pages 1-16, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11522-:d:659248
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/20/11522/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/20/11522/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lam, William H.K. & Shao, Hu & Sumalee, Agachai, 2008. "Modeling impacts of adverse weather conditions on a road network with uncertainties in demand and supply," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 890-910, December.
    2. Golob, Thomas F., 2003. "Structural equation modeling for travel behavior research," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 1-25, January.
    3. Vedel, Suzanne Elizabeth & Jacobsen, Jette Bredahl & Skov-Petersen, Hans, 2017. "Bicyclists’ preferences for route characteristics and crowding in Copenhagen – A choice experiment study of commuters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 53-64.
    4. Jiwang Yin & Xiaodong Qiu, 2021. "AI Technology and Online Purchase Intention: Structural Equation Model Based on Perceived Value," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    5. Koppelman, Frank S. & Wen, Chieh-Hua, 2000. "The paired combinatorial logit model: properties, estimation and application," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 75-89, February.
    6. Golob, Thomas F., 2000. "A simultaneous model of household activity participation and trip chain generation," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 355-376, June.
    7. Guang Yang & Yan Han & Hao Gong & Tiantian Zhang, 2020. "Spatial-Temporal Response Patterns of Tourist Flow under Real-Time Tourist Flow Diversion Scheme," Sustainability, MDPI, vol. 12(8), pages 1-28, April.
    8. Jing Peng & Juan Zhi-cai & Gao Lin-jie, 2014. "Application of the Expanded Theory of Planned Behavior in Intercity Travel Behavior," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-10, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Qiaoru & Zhang, Zhe & Li, Kun & Chen, Liang & Wei, Zhenlin & Zhang, Jingchun, 2020. "Evolutionary dynamics of traveling behavior in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    2. Bardal, Kjersti Granås & Mathisen, Terje Andreas, 2015. "Winter problems on mountain passes – Implications for cost-benefit analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 59-72.
    3. Xuemei Fu & Zhicai Juan, 2016. "Empirical analysis and comparisons about time-allocation patterns across segments based on mode-specific preferences," Transportation, Springer, vol. 43(1), pages 37-51, January.
    4. Iragaël Joly & Karl Littlejohn & Vincent Kaufmann, 2006. "La croissance des budgets-temps de transport en question : nouvelles approches," Post-Print halshs-00174992, HAL.
    5. Yu Ding & Huapu Lu & Lei Zhang, 2016. "An analysis of activity time use on vehicle usage rationed days," Transportation, Springer, vol. 43(1), pages 145-158, January.
    6. Bardal, Kjersti Granås, 2017. "Impacts of adverse weather on Arctic road transport," Journal of Transport Geography, Elsevier, vol. 59(C), pages 49-58.
    7. Metin Senbil & Ryuichi Kitamura & Jamilah Mohamad, 2009. "Residential location, vehicle ownership and travel in Asia: a comparative analysis of Kei-Han-Shin and Kuala Lumpur metropolitan areas," Transportation, Springer, vol. 36(3), pages 325-350, May.
    8. Yu Ding & Huapu Lu & Lei Zhang, 2016. "An analysis of activity time use on vehicle usage rationed days," Transportation, Springer, vol. 43(1), pages 145-158, January.
    9. Ye, Xin & Pendyala, Ram M. & Gottardi, Giovanni, 2007. "An exploration of the relationship between mode choice and complexity of trip chaining patterns," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 96-113, January.
    10. Rafiq, Rezwana & McNally, Michael G., 2022. "A structural analysis of the work tour behavior of transit commuters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 61-79.
    11. Xuemei Fu & Zhicai Juan, 2016. "Empirical analysis and comparisons about time-allocation patterns across segments based on mode-specific preferences," Transportation, Springer, vol. 43(1), pages 37-51, January.
    12. Vredin Johansson, Maria & Heldt, Tobias & Johansson, Per, 2006. "The effects of attitudes and personality traits on mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(6), pages 507-525, July.
    13. Najaf, Pooya & Thill, Jean-Claude & Zhang, Wenjia & Fields, Milton Greg, 2018. "City-level urban form and traffic safety: A structural equation modeling analysis of direct and indirect effects," Journal of Transport Geography, Elsevier, vol. 69(C), pages 257-270.
    14. Jae Seung Lee & Sungjin Park & Sanghoon Jung, 2016. "Effect of Crime Prevention through Environmental Design (CPTED) Measures on Active Living and Fear of Crime," Sustainability, MDPI, vol. 8(9), pages 1-16, August.
    15. Hoang, Nam H. & Vu, Hai L. & Lo, Hong K., 2018. "An informed user equilibrium dynamic traffic assignment problem in a multiple origin-destination stochastic network," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 207-230.
    16. Alvaro Rodriguez-Valencia & Jose Agustin Vallejo-Borda & German A. Barrero & Hernan Alberto Ortiz-Ramirez, 2022. "Towards an enriched framework of service evaluation for pedestrian and bicyclist infrastructure: acknowledging the power of users’ perceptions," Transportation, Springer, vol. 49(3), pages 791-814, June.
    17. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    18. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    19. Ding, Yu & Lu, Huapu, 2016. "Activity participation as a mediating variable to analyze the effect of land use on travel behavior: A structural equation modeling approach," Journal of Transport Geography, Elsevier, vol. 52(C), pages 23-28.
    20. Xue, Fei & Yao, Enjian, 2022. "Impact analysis of residential relocation on ownership, usage, and carbon-dioxide emissions of private cars," Energy, Elsevier, vol. 252(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11522-:d:659248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.