IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i19p10595-d642157.html
   My bibliography  Save this article

Traffic Volume Prediction: A Fusion Deep Learning Model Considering Spatial–Temporal Correlation

Author

Listed:
  • Yan Zheng

    (Zhejiang Scientific Research Institute of Transport, Hangzhou 310000, China
    Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport, Beijing Jiaotong University, Beijing 100044, China)

  • Chunjiao Dong

    (Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport, Beijing Jiaotong University, Beijing 100044, China)

  • Daiyue Dong

    (Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport, Beijing Jiaotong University, Beijing 100044, China)

  • Shengyou Wang

    (Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport, Beijing Jiaotong University, Beijing 100044, China)

Abstract

In this paper, a fusion deep learning model considering spatial–temporal correlation is proposed to solve the problem of urban road traffic flow prediction. Firstly, this paper holds that the traffic flow of a section in the urban road network not only depends on the fluctuation of its own time series, but is also related to the traffic flow of other sections in the whole region. Therefore, a traffic flow similarity measurement method based on wavelet decomposition and dynamic time warping is proposed to screen the sections which are similar to the traffic flow state of the target section. Secondly, in order to improve the prediction accuracy, the unstable time series are reconstructed into stationary time series by differential method. Finally, taking the extracted traffic flow data of a similar section as an independent variable and the traffic flow data of target section as dependent variable, we input the above variables into the proposed CNN-LSTM fusion deep learning model for traffic flow prediction. The results show that the proposed model has a higher accuracy and stability than the other benchmark models. The MAPE can reach 92.68%, 93.39%, 85.14%, and 76.14% at a time interval of 5 min, 15 min, 30 min, and 60 min, and the other evaluation indexes are also better than the rest of the benchmark models.

Suggested Citation

  • Yan Zheng & Chunjiao Dong & Daiyue Dong & Shengyou Wang, 2021. "Traffic Volume Prediction: A Fusion Deep Learning Model Considering Spatial–Temporal Correlation," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10595-:d:642157
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/19/10595/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/19/10595/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Ke & Ma, Changxi & Qiao, Yihuan & Lu, Xijin & Hao, Weining & Dong, Sheng, 2021. "A hybrid deep learning model with 1DCNN-LSTM-Attention networks for short-term traffic flow prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min Li & Mengshan Li & Bilong Liu & Jiang Liu & Zhen Liu & Dijia Luo, 2022. "Spatio-Temporal Traffic Flow Prediction Based on Coordinated Attention," Sustainability, MDPI, vol. 14(12), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Jie & Nuertayi, Akejiang & Yan, Yamin & Liu, Shan & Liu, Yongqian, 2023. "Hybrid physical and data driven modeling for dynamic operation characteristic simulation of wind turbine," Renewable Energy, Elsevier, vol. 215(C).
    2. Zhang, Lei & Zhao, Xin & Zhu, Ge & He, Jun & Chen, Jian & Chen, Zhicheng & Traore, Seydou & Liu, Junguo & Singh, Vijay P., 2023. "Short-term daily reference evapotranspiration forecasting using temperature-based deep learning models in different climate zones in China," Agricultural Water Management, Elsevier, vol. 289(C).
    3. Zhao, Jiandong & Yu, Zhixin & Yang, Xin & Gao, Ziyou & Liu, Wenhui, 2022. "Short term traffic flow prediction of expressway service area based on STL-OMS," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    4. Zheng, Yan & Wang, Shengyou & Dong, Chunjiao & Li, Wenquan & Zheng, Wen & Yu, Jingcai, 2022. "Urban road traffic flow prediction: A graph convolutional network embedded with wavelet decomposition and attention mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    5. Tao, Zihan & Zhang, Chu & Xiong, Jinlin & Hu, Haowen & Ji, Jie & Peng, Tian & Nazir, Muhammad Shahzad, 2023. "Evolutionary gate recurrent unit coupling convolutional neural network and improved manta ray foraging optimization algorithm for performance degradation prediction of PEMFC," Applied Energy, Elsevier, vol. 336(C).
    6. Liu, Bingchun & Song, Chengyuan & Wang, Qingshan & Zhang, Xinming & Chen, Jiali, 2022. "Research on regional differences of China's new energy vehicles promotion policies: A perspective of sales volume forecasting," Energy, Elsevier, vol. 248(C).
    7. Tian, Jing & Song, Xianmin & Tao, Pengfei & Liang, Jiahui, 2022. "Pattern-adaptive generative adversarial network with sparse data for traffic state estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    8. Hui, Fei & Wei, Cheng & ShangGuan, Wei & Ando, Ryosuke & Fang, Shan, 2022. "Deep encoder–decoder-NN: A deep learning-based autonomous vehicle trajectory prediction and correction model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    9. Liu, Bingchun & Song, Chengyuan & Liang, Xiaoqin & Lai, Mingzhao & Yu, Zhecheng & Ji, Jie, 2023. "Regional differences in China's electric vehicle sales forecasting: Under supply-demand policy scenarios," Energy Policy, Elsevier, vol. 177(C).
    10. Wang, Yaguan & Qin, Yong & Guo, Jianyuan & Cao, Zhiwei & Jia, Limin, 2022. "Multi-point short-term prediction of station passenger flow based on temporal multi-graph convolutional network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    11. Ma, Changxi & Zhao, Mingxi, 2023. "Spatio-temporal multi-graph convolutional network based on wavelet analysis for vehicle speed prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    12. Ismail Shah & Izhar Muhammad & Sajid Ali & Saira Ahmed & Mohammed M. A. Almazah & A. Y. Al-Rezami, 2022. "Forecasting Day-Ahead Traffic Flow Using Functional Time Series Approach," Mathematics, MDPI, vol. 10(22), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10595-:d:642157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.