IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p8892-d610990.html
   My bibliography  Save this article

Analysis of Professionals’ and the General Public’s Perceptions of Passive Houses in Korea: Needs Assessment for the Improvement of the Energy Efficiency and Indoor Environmental Quality

Author

Listed:
  • Joohyun Lee

    (Sustainability R&D Center, Chungyeon, Seoul 06248, Korea)

  • Mardelle McCuskey Shepley

    (Department of Design and Environmental Analysis, Cornell University, Ithaca, NY 14853, USA)

  • Jungmann Choi

    (ZARIN ENC Architects, Passive House Institute Korea, Seoul 05520, Korea)

Abstract

Despite the economic and environmental benefits of passive houses, their market penetration has been low, which is partially due to misperceptions regarding their cost. This study examined the perceptions of building-related professionals and the general public regarding Korean passive houses to explore strategies for spurring passive house concepts and practices. The participants took an online survey on their interest in and reasons to reside in passive houses and their expected construction costs. The results from two separate groups of participants, including 162 professionals and 130 members of the general public, were analyzed using descriptive and inferential statistics. Both the professional and general public groups expressed a strong interest in passive houses because of the comfortable and healthy indoor environment, energy efficiency, cost savings, and sustainability that they provide. However, the expected construction costs of passive houses were perceived differently by the two groups: They were believed to be less expensive by the professionals and more expensive by the public respondents. This difference seems to result from their prior knowledge or experience regarding passive houses. Both groups were willing to pay more and assumed that the high expected costs were related to the construction products, systems, and labor costs of passive houses. The results showed that the lack of information or education on passive houses could be a major barrier to accessing passive houses, especially with the general public, while the cost could pose less of a barrier to the overall growth of the Korean passive house market. Further efforts by the government and industry are needed in order to provide more educational programs and to identify and manufacture more reasonably priced construction materials.

Suggested Citation

  • Joohyun Lee & Mardelle McCuskey Shepley & Jungmann Choi, 2021. "Analysis of Professionals’ and the General Public’s Perceptions of Passive Houses in Korea: Needs Assessment for the Improvement of the Energy Efficiency and Indoor Environmental Quality," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8892-:d:610990
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/8892/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/8892/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Audenaert, A. & De Cleyn, S.H. & Vankerckhove, B., 2008. "Economic analysis of passive houses and low-energy houses compared with standard houses," Energy Policy, Elsevier, vol. 36(1), pages 47-55, January.
    2. Adrian Pitts, 2017. "Passive House and Low Energy Buildings: Barriers and Opportunities for Future Development within UK Practice," Sustainability, MDPI, vol. 9(2), pages 1-26, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jungmin An & Dong-Kwan Kim & Jinyeong Lee & Sung-Kwan Joo, 2021. "Least Squares Monte Carlo Simulation-Based Decision-Making Method for Photovoltaic Investment in Korea," Sustainability, MDPI, vol. 13(19), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jisoo Shim & Doosam Song & Joowook Kim, 2018. "The Economic Feasibility of Passive Houses in Korea," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
    2. Rongrong Yu & Ning Gu & Michael J. Ostwald, 2022. "Architects’ Perceptions about Sustainable Design Practice and the Support Provided for This by Digital Tools: A Study in Australia," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    3. Lin, Tyrone T. & Huang, Shio-Ling, 2011. "Application of the modified Tobin's q to an uncertain energy-saving project with the real options concept," Energy Policy, Elsevier, vol. 39(1), pages 408-420, January.
    4. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.
    5. Lin, Tyrone T. & Huang, Shio-Ling, 2010. "An entry and exit model on the energy-saving investment strategy with real options," Energy Policy, Elsevier, vol. 38(2), pages 794-802, February.
    6. Aydin, Yusuf Cihat & Mirzaei, Parham A. & Akhavannasab, Sanam, 2019. "On the relationship between building energy efficiency, aesthetic features and marketability: Toward a novel policy for energy demand reduction," Energy Policy, Elsevier, vol. 128(C), pages 593-606.
    7. Audenaert, A. & De Boeck, L. & Geudens, K. & Buyle, M., 2012. "Cost and E-level analysis of different dwelling types and different heating systems with or without heat exchanger," Energy, Elsevier, vol. 44(1), pages 604-610.
    8. Kylili, Angeliki & Ilic, Milos & Fokaides, Paris A., 2017. "Whole-building Life Cycle Assessment (LCA) of a passive house of the sub-tropical climatic zone," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 169-177.
    9. Ahsan Waqar & Idris Othman & Nasir Shafiq & Hasim Altan & Bertug Ozarisoy, 2023. "Modeling the Effect of Overcoming the Barriers to Passive Design Implementation on Project Sustainability Building Success: A Structural Equation Modeling Perspective," Sustainability, MDPI, vol. 15(11), pages 1-26, June.
    10. Georges, L. & Massart, C. & Van Moeseke, G. & De Herde, A., 2012. "Environmental and economic performance of heating systems for energy-efficient dwellings: Case of passive and low-energy single-family houses," Energy Policy, Elsevier, vol. 40(C), pages 452-464.
    11. Soršak, Marko & Leskovar, Vesna Žegarac & Premrov, Miroslav & Goričanec, Darko & Pšunder, Igor, 2014. "Economical optimization of energy-efficient timber buildings: Case study for single family timber house in Slovenia," Energy, Elsevier, vol. 77(C), pages 57-65.
    12. Krzysztof Grygierek & Joanna Ferdyn-Grygierek & Anna Gumińska & Łukasz Baran & Magdalena Barwa & Kamila Czerw & Paulina Gowik & Klaudia Makselan & Klaudia Potyka & Agnes Psikuta, 2020. "Energy and Environmental Analysis of Single-Family Houses Located in Poland," Energies, MDPI, vol. 13(11), pages 1-25, May.
    13. Ramy Mahmoud & John M. Kamara & Neil Burford, 2020. "Opportunities and Limitations of Building Energy Performance Simulation Tools in the Early Stages of Building Design in the UK," Sustainability, MDPI, vol. 12(22), pages 1-29, November.
    14. Timmons, David & Konstantinidis, Charalampos & Shapiro, Andrew M. & Wilson, Alex, 2016. "Decarbonizing residential building energy: A cost-effective approach," Energy Policy, Elsevier, vol. 92(C), pages 382-392.
    15. Audenaert, Amaryllis & De Boeck, Liesje & Geudens, K. & Buyle, M., 2011. "Cost and E-level analysis of different dwelling types and different heating systems with or without heat exchanger," Working Papers 2011/33, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    16. Pablo Jimenez-Moreno, 2021. "Mass Customisation for Zero-Energy Housing," Sustainability, MDPI, vol. 13(10), pages 1-24, May.
    17. Adrian Pitts, 2017. "Passive House and Low Energy Buildings: Barriers and Opportunities for Future Development within UK Practice," Sustainability, MDPI, vol. 9(2), pages 1-26, February.
    18. Ana Paola Vargas & Leon Hamui, 2021. "Thermal Energy Performance Simulation of a Residential Building Retrofitted with Passive Design Strategies: A Case Study in Mexico," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    19. Groesser, Stefan N., 2014. "Co-evolution of legal and voluntary standards: Development of energy efficiency in Swiss residential building codes," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 1-16.
    20. Aleksandra Siudek & Anna M. Klepacka & Wojciech J. Florkowski & Piotr Gradziuk, 2020. "Renewable Energy Utilization in Rural Residential Housing: Economic and Environmental Facets," Energies, MDPI, vol. 13(24), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8892-:d:610990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.