IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i13p7262-d584513.html
   My bibliography  Save this article

Territorial-Based vs. Consumption-Based Carbon Footprint of an Urban District—A Case Study of Berlin-Wedding

Author

Listed:
  • Clara Lenk

    (Department of Sustainable Engineering, Institute of Environmental Technology, Technische Universität Berlin, 10623 Berlin, Germany)

  • Rosalie Arendt

    (Department of Sustainable Engineering, Institute of Environmental Technology, Technische Universität Berlin, 10623 Berlin, Germany)

  • Vanessa Bach

    (Department of Sustainable Engineering, Institute of Environmental Technology, Technische Universität Berlin, 10623 Berlin, Germany)

  • Matthias Finkbeiner

    (Department of Sustainable Engineering, Institute of Environmental Technology, Technische Universität Berlin, 10623 Berlin, Germany)

Abstract

Cities account for 70% of carbon emissions and are therefore a vital driver for climate change. Thus, a city’s main contributing sectors need to be identified. Territorial-based footprints focus on the final energy consumption, which is derived from the stationary and transport sectors. The consumption-based approach is based on consumption data, which are converted into carbon emissions using an input–output model. If the consumption-based approach is applied to an urban district not only emissions in the investigated area are considered, but also those that occur along the supply chain of consumed products in the urban district. The goal of this study was to apply and evaluate two different approaches to calculate an urban district’s carbon footprint to support climate protection management at the local government level. To achieve this goal, these two different approaches were applied to calculate the carbon emissions of the urban district Wedding in Berlin and were compared regarding criteria such as data availability and relevance. The footprints resulted in 400,947 t CO 2 -eq. for the territorial approach and in 401,371 t CO 2 -eq. per year for the consumption-based approach, which resulted in 4.61 t CO 2 -eq and 4.62 t CO 2 -eq per capita and year, respectively. Methodologically, the two approaches differ significantly, but the total results showed a difference of only 0.1%. Thus, this study cannot verify that the consumption-based approach mostly leads to higher emissions per capita in the Global North. This could be due to lower purchasing power and a higher share of multiple-person households in the relatively poor urban district of Wedding, Berlin. The territorial approach is more suitable to derive measures for local climate action, whereas the consumption-based approach highlights the responsibility of consumers for GHG emissions along the supply chain and the importance of the food sector.

Suggested Citation

  • Clara Lenk & Rosalie Arendt & Vanessa Bach & Matthias Finkbeiner, 2021. "Territorial-Based vs. Consumption-Based Carbon Footprint of an Urban District—A Case Study of Berlin-Wedding," Sustainability, MDPI, vol. 13(13), pages 1-18, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7262-:d:584513
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/13/7262/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/13/7262/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hermannsson, Kristinn & McIntyre, Stuart G., 2014. "Local consumption and territorial based accounting for CO2 emissions," Ecological Economics, Elsevier, vol. 104(C), pages 1-11.
    2. Xu, Chao & Haase, Dagmar & Su, Meirong & Yang, Zhifeng, 2019. "The impact of urban compactness on energy-related greenhouse gas emissions across EU member states: Population density vs physical compactness," Applied Energy, Elsevier, vol. 254(C).
    3. Chen, Shaoqing & Long, Huihui & Chen, Bin & Feng, Kuishuang & Hubacek, Klaus, 2020. "Urban carbon footprints across scale: Important considerations for choosing system boundaries," Applied Energy, Elsevier, vol. 259(C).
    4. Konstantin Stadler & Richard Wood & Tatyana Bulavskaya & Carl†Johan Södersten & Moana Simas & Sarah Schmidt & Arkaitz Usubiaga & José Acosta†Fernández & Jeroen Kuenen & Martin Bruckner & Stefan, 2018. "EXIOBASE 3: Developing a Time Series of Detailed Environmentally Extended Multi†Regional Input†Output Tables," Journal of Industrial Ecology, Yale University, vol. 22(3), pages 502-515, June.
    5. Alexander Cremer & Markus Berger & Katrin Müller & Matthias Finkbeiner, 2021. "The First City Organizational LCA Case Study: Feasibility and Lessons Learned from Vienna," Sustainability, MDPI, vol. 13(9), pages 1-15, April.
    6. Peters, Glen P., 2008. "From production-based to consumption-based national emission inventories," Ecological Economics, Elsevier, vol. 65(1), pages 13-23, March.
    7. Fan, Jing-Li & Hou, Yun-Bing & Wang, Qian & Wang, Ce & Wei, Yi-Ming, 2016. "Exploring the characteristics of production-based and consumption-based carbon emissions of major economies: A multiple-dimension comparison," Applied Energy, Elsevier, vol. 184(C), pages 790-799.
    8. Li, You & Hewitt, C.N., 2008. "The effect of trade between China and the UK on national and global carbon dioxide emissions," Energy Policy, Elsevier, vol. 36(6), pages 1907-1914, June.
    9. Mohammad Soltani & Omeid Rahmani & Amin Beiranvand Pour & Yousef Ghaderpour & Ibrahim Ngah & Siti Hajar Misnan, 2019. "Determinants of Variation in Household Energy Choice and Consumption: Case from Mahabad City, Iran," Sustainability, MDPI, vol. 11(17), pages 1-20, September.
    10. Bastianoni, Simone & Pulselli, Federico Maria & Tiezzi, Enzo, 2004. "The problem of assigning responsibility for greenhouse gas emissions," Ecological Economics, Elsevier, vol. 49(3), pages 253-257, July.
    11. Ferenc Bakó & Judit Berkes & Cecília Szigeti, 2021. "Households’ Electricity Consumption in Hungarian Urban Areas," Energies, MDPI, vol. 14(10), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacksohn, Anke & Tovar Reaños, Miguel Angel & Pothen, Frank & Rehdanz, Katrin, 2023. "Trends in household demand and greenhouse gas footprints in Germany: Evidence from microdata of the last 20 years," Ecological Economics, Elsevier, vol. 208(C).
    2. Jonas Bunsen & Matthias Finkbeiner, 2022. "An Introductory Review of Input-Output Analysis in Sustainability Sciences Including Potential Implications of Aggregation," Sustainability, MDPI, vol. 15(1), pages 1-24, December.
    3. Kimmo Lylykangas & Rebecca Cachia & Damiano Cerrone & Kaie Kriiska & Ulrich Norbisrath & Peter R. Walke & Anssi Joutsiniemi & Jukka Heinonen, 2023. "Territorial and Consumption-Based Greenhouse Gas Emissions Assessments: Implications for Spatial Planning Policies," Land, MDPI, vol. 12(6), pages 1-29, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Yang & Suocheng Dong & Fujia Li & Hao Cheng & Zehong Li & Yu Li & Shantong Li, 2021. "An analysis on the adoption of an interregional carbon emission reduction allocation approach in the context of China’s interprovincial carbon emission transfer," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4385-4411, March.
    2. Boya Zhang & Shukuan Bai & Yadong Ning & Tao Ding & Yan Zhang, 2020. "Emission Embodied in International Trade and Its Responsibility from the Perspective of Global Value Chain: Progress, Trends, and Challenges," Sustainability, MDPI, vol. 12(8), pages 1-26, April.
    3. Hongguang Liu & Xiaomei Fan, 2017. "Value-Added-Based Accounting of CO 2 Emissions: A Multi-Regional Input-Output Approach," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    4. Zhang, Youguo, 2015. "Provincial responsibility for carbon emissions in China under different principles," Energy Policy, Elsevier, vol. 86(C), pages 142-153.
    5. Guo, Ju’e & Zhang, Zengkai & Meng, Lei, 2012. "China’s provincial CO2 emissions embodied in international and interprovincial trade," Energy Policy, Elsevier, vol. 42(C), pages 486-497.
    6. Maria Csutora & Zs�fia Vetőn� m�zner, 2014. "Proposing a beneficiary-based shared responsibility approach for calculating national carbon accounts during the post-Kyoto era," Climate Policy, Taylor & Francis Journals, vol. 14(5), pages 599-616, September.
    7. Levitt, Clinton J. & Pedersen, Morten S. & Sørensen, Anders, 2015. "Examining the efforts of a small, open economy to reduce carbon emissions: The case of Denmark," Ecological Economics, Elsevier, vol. 119(C), pages 94-106.
    8. Airebule, Palizha & Cheng, Haitao & Ishikawa, Jota, 2023. "Assessing carbon emissions embodied in international trade based on shared responsibility," Journal of the Japanese and International Economies, Elsevier, vol. 68(C).
    9. Pottier, Antonin & Combet, Emmanuel & Cayla, Jean-Michel & de Lauretis, Simona & Nadaud, Franck, 2021. "Who emits CO2 ? Landscape of ecological inequalities in France from a critical perspective," FEEM Working Papers 311053, Fondazione Eni Enrico Mattei (FEEM).
    10. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2023. "Energy footprints and the international trade network: A new dataset. Is the European Union doing it better?," Ecological Economics, Elsevier, vol. 204(PA).
    11. Christian Lininger, 2013. "Consumption-Based Approaches in International Climate Policy: An Analytical Evaluation of the Implications for Cost-Effectiveness, Carbon Leakage, and the International Income Distribution," Graz Economics Papers 2013-03, University of Graz, Department of Economics.
    12. Haoran Wang & Toshiyuki Fujita, 2023. "A Review of Research on Embodied Carbon in International Trade," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    13. Rui Xie & Chao Gao & Guomei Zhao & Yu Liu & Shengcheng Xu, 2017. "Empirical Study of China’s Provincial Carbon Responsibility Sharing: Provincial Value Chain Perspective," Sustainability, MDPI, vol. 9(4), pages 1-16, April.
    14. Dolabella, Marcelo & Mesquita Moreira, Mauricio, 2022. "Fighting Global Warming: Is Trade Policy in Latin America and the Caribbean a Help or a Hindrance?: Technical Appendix," IDB Publications (Working Papers) 12526, Inter-American Development Bank.
    15. Li, Jia Shuo & Zhou, H.W. & Meng, Jing & Yang, Q. & Chen, B. & Zhang, Y.Y., 2018. "Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city," Applied Energy, Elsevier, vol. 226(C), pages 1076-1086.
    16. Suvajit Banerjee, 2021. "Addressing the carbon emissions embodied in India’s bilateral trade with two eminent Annex-II parties: with input–output and spatial decomposition analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5430-5464, April.
    17. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Xue, Jin-Jun, 2019. "Changes in carbon intensity globally and in countries: Attribution and decomposition analysis," Applied Energy, Elsevier, vol. 235(C), pages 1492-1504.
    18. Wiedmann, Thomas, 2009. "A first empirical comparison of energy Footprints embodied in trade -- MRIO versus PLUM," Ecological Economics, Elsevier, vol. 68(7), pages 1975-1990, May.
    19. López, Luis Antonio & Arce, Guadalupe & Zafrilla, Jorge Enrique, 2013. "Parcelling virtual carbon in the pollution haven hypothesis," Energy Economics, Elsevier, vol. 39(C), pages 177-186.
    20. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7262-:d:584513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.