IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i11p6309-d567685.html
   My bibliography  Save this article

Research on Multi-Echelon Inventory Optimization for Fresh Products in Supply Chains

Author

Listed:
  • Yingying Zhang

    (School of Automation, Chongqing University, Chongqing 400030, China)

  • Yi Chai

    (School of Automation, Chongqing University, Chongqing 400030, China)

  • Le Ma

    (School of Automation, Chongqing University, Chongqing 400030, China)

Abstract

Fresh products are perishable and fragile, which easily leads to higher inventory costs and requires reasonable planning of inventory management. Therefore, it is very important for fresh product supply chain systems to have multi-echelon inventory control. However, in past studies, few control models of the multi-echelon inventory considered the deterioration rate of perishable products as the variable factor. In this paper, on the basis of considering the perishable characteristics of fresh products, combining the deterioration rate with the inventory control model, a multi-echelon inventory control model for fresh products is designed and optimized, and the optimal solution from the whole supply chain is obtained through the optimal fitness function by genetic algorithm. Finally, Flexsim is used to simulate the two inventory strategies before and after optimization. After simulation comparison and analysis, it is verified that the optimized inventory control strategy has lower costs. The research results can help supply chain managers of fresh products to make inventory management decisions and save costs, which is of practical significance.

Suggested Citation

  • Yingying Zhang & Yi Chai & Le Ma, 2021. "Research on Multi-Echelon Inventory Optimization for Fresh Products in Supply Chains," Sustainability, MDPI, vol. 13(11), pages 1-15, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6309-:d:567685
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/11/6309/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/11/6309/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kevin Weng, Z., 1995. "Modeling quantity discounts under general price-sensitive demand functions: Optimal policies and relationships," European Journal of Operational Research, Elsevier, vol. 86(2), pages 300-314, October.
    2. Linh N. K. Duong & Lincoln C. Wood & William Y. C. Wang, 2018. "Effects of Consumer Demand, Product Lifetime, and Substitution Ratio on Perishable Inventory Management," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    3. Kamran Moinzadeh, 2002. "A Multi-Echelon Inventory System with Information Exchange," Management Science, INFORMS, vol. 48(3), pages 414-426, March.
    4. Kierzkowski, Artur & Kisiel, Tomasz, 2017. "Simulation model of security control system functioning: A case study of the Wroclaw Airport terminal," Journal of Air Transport Management, Elsevier, vol. 64(PB), pages 173-185.
    5. Diks, E. B. & de Kok, A. G., 1998. "Optimal control of a divergent multi-echelon inventory system," European Journal of Operational Research, Elsevier, vol. 111(1), pages 75-97, November.
    6. De, Arijit & Mogale, D.G. & Zhang, Mengdi & Pratap, Saurabh & Kumar, Sri Krishna & Huang, George Q., 2020. "Multi-period multi-echelon inventory transportation problem considering stakeholders behavioural tendencies," International Journal of Production Economics, Elsevier, vol. 225(C).
    7. Onur Kaya & Sajjad Rahimi Ghahroodi, 2018. "Inventory control and pricing for perishable products under age and price dependent stochastic demand," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(1), pages 1-35, August.
    8. Pourya Pourhejazy & Oh Kyoung Kwon, 2016. "The New Generation of Operations Research Methods in Supply Chain Optimization: A Review," Sustainability, MDPI, vol. 8(10), pages 1-23, October.
    9. Patsorn Thammatadatrakul & Navee Chiadamrong, 2019. "Optimal inventory control policy of a hybrid manufacturing – remanufacturing system using a hybrid simulation optimisation algorithm," Journal of Simulation, Taylor & Francis Journals, vol. 13(1), pages 14-27, January.
    10. Avci, Mualla Gonca & Selim, Hasan, 2018. "A multi-objective simulation-based optimization approach for inventory replenishment problem with premium freights in convergent supply chains," Omega, Elsevier, vol. 80(C), pages 153-165.
    11. Iida, Tetsuo, 2001. "The infinite horizon non-stationary stochastic multi-echelon inventory problem and near-myopic policies," European Journal of Operational Research, Elsevier, vol. 134(3), pages 525-539, November.
    12. Janssen, Larissa & Diabat, Ali & Sauer, Jürgen & Herrmann, Frank, 2018. "A stochastic micro-periodic age-based inventory replenishment policy for perishable goods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 445-465.
    13. Giannoccaro, Ilaria & Pontrandolfo, Pierpaolo & Scozzi, Barbara, 2003. "A fuzzy echelon approach for inventory management in supply chains," European Journal of Operational Research, Elsevier, vol. 149(1), pages 185-196, August.
    14. Hill, Roger M., 1997. "The single-vendor single-buyer integrated production-inventory model with a generalised policy," European Journal of Operational Research, Elsevier, vol. 97(3), pages 493-499, March.
    15. Kochel, P. & Nielander, U., 2005. "Simulation-based optimisation of multi-echelon inventory systems," International Journal of Production Economics, Elsevier, vol. 93(1), pages 505-513, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Kok, Ton & Grob, Christopher & Laumanns, Marco & Minner, Stefan & Rambau, Jörg & Schade, Konrad, 2018. "A typology and literature review on stochastic multi-echelon inventory models," European Journal of Operational Research, Elsevier, vol. 269(3), pages 955-983.
    2. Carole Camisullis & Vincent Giard, 2010. "Détermination des stocks de sécurité dans une chaîne logistique-amont dédiée à une production de masse de produits fortement diversifiés," Working Papers hal-00876986, HAL.
    3. Rau, Hsin & Wu, Mei-Ying & Wee, Hui-Ming, 2003. "Integrated inventory model for deteriorating items under a multi-echelon supply chain environment," International Journal of Production Economics, Elsevier, vol. 86(2), pages 155-168, November.
    4. Olof Stenius & Ayşe Gönül Karaarslan & Johan Marklund & A. G. de Kok, 2016. "Exact Analysis of Divergent Inventory Systems with Time-Based Shipment Consolidation and Compound Poisson Demand," Operations Research, INFORMS, vol. 64(4), pages 906-921, August.
    5. Sarmah, S.P. & Acharya, D. & Goyal, S.K., 2006. "Buyer vendor coordination models in supply chain management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 1-15, November.
    6. Dai, Bo & Chen, Haoxun & Li, Yuan & Zhang, Yidong & Wang, Xiaoqing & Deng, Yuming, 2023. "An alternating direction method of multipliers for optimizing (s, S) policies in a distribution system with joint replenishment volume constraints," Omega, Elsevier, vol. 116(C).
    7. repec:dau:papers:123456789/3718 is not listed on IDEAS
    8. Gumus, Alev Taskin & Guneri, Ali Fuat & Ulengin, Fusun, 2010. "A new methodology for multi-echelon inventory management in stochastic and neuro-fuzzy environments," International Journal of Production Economics, Elsevier, vol. 128(1), pages 248-260, November.
    9. repec:dau:papers:123456789/3720 is not listed on IDEAS
    10. Pal, Brojeswar & Sana, Shib Sankar & Chaudhuri, Kripasindhu, 2012. "A multi-echelon supply chain model for reworkable items in multiple-markets with supply disruption," Economic Modelling, Elsevier, vol. 29(5), pages 1891-1898.
    11. Simpson, N.C., 2007. "Central versus local multiple stage inventory planning: An analysis of solutions," European Journal of Operational Research, Elsevier, vol. 181(1), pages 127-138, August.
    12. Carole Camisullis & Vincent Giard & Gisele Mendy-Bilek, 2010. "The causes and determination of safety stocks in upstream supply chains for mass production of customized products," Working Papers hal-00876995, HAL.
    13. Jing Wang & Yuchen Zhang & Mark Goh, 2018. "Moderating the Role of Firm Size in Sustainable Performance Improvement through Sustainable Supply Chain Management," Sustainability, MDPI, vol. 10(5), pages 1-14, May.
    14. Valentini, Giovanni & Zavanella, Lucio, 2003. "The consignment stock of inventories: industrial case and performance analysis," International Journal of Production Economics, Elsevier, vol. 81(1), pages 215-224, January.
    15. Preil, Deniz & Krapp, Michael, 2022. "Bandit-based inventory optimisation: Reinforcement learning in multi-echelon supply chains," International Journal of Production Economics, Elsevier, vol. 252(C).
    16. Tsai, Jung-Fa, 2007. "An optimization approach for supply chain management models with quantity discount policy," European Journal of Operational Research, Elsevier, vol. 177(2), pages 982-994, March.
    17. van der Heijden, Matthieu, 2000. "Near cost-optimal inventory control policies for divergent networks under fill rate constraints," International Journal of Production Economics, Elsevier, vol. 63(2), pages 161-179, January.
    18. Weng, Z. Kevin, 2004. "Coordinating order quantities between the manufacturer and the buyer: A generalized newsvendor model," European Journal of Operational Research, Elsevier, vol. 156(1), pages 148-161, July.
    19. Jones, Philip C. & Moses, Leon N. & Zydiak, James L., 1998. "Inventory investment, product cycles, and the imperfectly competitive firm," International Journal of Production Economics, Elsevier, vol. 54(3), pages 267-276, May.
    20. Jung, Jung Woo & Lee, Young Hae, 2010. "Heuristic algorithms for production and transportation planning through synchronization of a serial supply chain," International Journal of Production Economics, Elsevier, vol. 124(2), pages 433-447, April.
    21. Dobromir Herzog, 2021. "Human factor aspects in information security management in the traditional IT and cloud computing models," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(2), pages 93-108.
    22. Essam Kaoud & Mohammad A. M. Abdel-Aal & Tatsuhiko Sakaguchi & Naoki Uchiyama, 2020. "Design and Optimization of the Dual-Channel Closed Loop Supply Chain with E-Commerce," Sustainability, MDPI, vol. 12(23), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6309-:d:567685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.