IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i11p5922-d561333.html
   My bibliography  Save this article

The Influence of the Duration of Journey Stages on Transport Mode Choice: A Case Study in the City of Tarnow

Author

Listed:
  • Marek Bauer

    (Department of Transportation Systems, Cracow University of Technology, 31-155 Kraków, Poland)

  • Piotr Kisielewski

    (Department of Rail Vehicles and Transport, Cracow University of Technology, 31-155 Kraków, Poland)

Abstract

In this paper, we present the effect of making too many private car journeys on city transport systems. A sustainable approach for the development of transport infrastructure is needed, which takes into account local conditions and needs, especially for areas with a high density of origins and destinations. The criteria for evaluating public transport and bicycle transport are presented, which, if acceptable to city residents, may lead to changes in transportation behaviors and, thus, a more efficient use of transport in daily travels. Factors affecting the mode of transport choice include the duration of particular stages of a journey, such as reaching the location where the first ride commences/driving from the travel origin, waiting for a vehicle (bus journeys) or ride/drive, and reaching the travel destination of the last ride/drive. Additionally, the possibility of using a car and having a seasonal ticket for public transport were taken into account. In this study, the results of detailed travel research in the Polish city of Tarnow were used. It has been proven that the low share of public transport in daily travels is due, among other things, to excessive time to reach a stop and due to walking to journey destinations, whereas the low share of cycling is mainly due to a lack of comfort and safe cycling infrastructure.

Suggested Citation

  • Marek Bauer & Piotr Kisielewski, 2021. "The Influence of the Duration of Journey Stages on Transport Mode Choice: A Case Study in the City of Tarnow," Sustainability, MDPI, vol. 13(11), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:5922-:d:561333
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/11/5922/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/11/5922/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Holmgren, Johan, 2020. "The effect of public transport quality on car ownership – A source of wider benefits?," Research in Transportation Economics, Elsevier, vol. 83(C).
    2. Krygsman, Stephan & Dijst, Martin & Arentze, Theo, 2004. "Multimodal public transport: an analysis of travel time elements and the interconnectivity ratio," Transport Policy, Elsevier, vol. 11(3), pages 265-275, July.
    3. Romanika Okraszewska & Aleksandra Romanowska & Marcin Wołek & Jacek Oskarbski & Krystian Birr & Kazimierz Jamroz, 2018. "Integration of a Multilevel Transport System Model into Sustainable Urban Mobility Planning," Sustainability, MDPI, vol. 10(2), pages 1-20, February.
    4. Garcia-Martinez, Andres & Cascajo, Rocio & Jara-Diaz, Sergio R. & Chowdhury, Subeh & Monzon, Andres, 2018. "Transfer penalties in multimodal public transport networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PA), pages 52-66.
    5. Gao, Yanan & Rasouli, Soora & Timmermans, Harry & Wang, Yuanqing, 2018. "Trip stage satisfaction of public transport users: A reference-based model incorporating trip attributes, perceived service quality, psychological disposition and difference tolerance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 759-775.
    6. Mendiola, Lorea & González, Pilar, 2018. "Temporal dynamics in the relationship between land use factors and modal split in commuting: A local case study," Land Use Policy, Elsevier, vol. 77(C), pages 267-278.
    7. Venter, Christoffel J., 2020. "Measuring the quality of the first/last mile connection to public transport," Research in Transportation Economics, Elsevier, vol. 83(C).
    8. Zawieska, Jakub & Pieriegud, Jana, 2018. "Smart city as a tool for sustainable mobility and transport decarbonisation," Transport Policy, Elsevier, vol. 63(C), pages 39-50.
    9. Schakenbos, Rik & Paix, Lissy La & Nijenstein, Sandra & Geurs, Karst T., 2016. "Valuation of a transfer in a multimodal public transport trip," Transport Policy, Elsevier, vol. 46(C), pages 72-81.
    10. Maria Cieśla & Aleksander Sobota & Marianna Jacyna, 2020. "Multi-Criteria Decision Making Process in Metropolitan Transport Means Selection Based on the Sharing Mobility Idea," Sustainability, MDPI, vol. 12(17), pages 1-21, September.
    11. Carlos Bueno-Suárez & Daniel Coq-Huelva, 2020. "Sustaining What Is Unsustainable: A Review of Urban Sprawl and Urban Socio-Environmental Policies in North America and Western Europe," Sustainability, MDPI, vol. 12(11), pages 1-36, May.
    12. Zhao, Chunli & Carstensen, Trine Agervig & Nielsen, Thomas Alexander Sick & Olafsson, Anton Stahl, 2018. "Bicycle-friendly infrastructure planning in Beijing and Copenhagen - between adapting design solutions and learning local planning cultures," Journal of Transport Geography, Elsevier, vol. 68(C), pages 149-159.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seungkyu Ryu & Anthony Chen & Jacqueline Su & Xintao Liu & Jiangbo (Gabe) Yu, 2021. "Considering Space Syntax in Bicycle Traffic Assignment with One or More User Classes," Sustainability, MDPI, vol. 13(19), pages 1-15, October.
    2. Marek Bauer & Kinga Bauer, 2022. "Analysis of the Impact of the COVID-19 Pandemic on the Future of Public Transport: Example of Warsaw," Sustainability, MDPI, vol. 14(12), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biao Yin & Fabien Leurent, 2022. "Estimation of Transfer Time from Multimodal Transit Services in the Paris Region," Post-Print hal-03841390, HAL.
    2. Wu, Pan & Xu, Lunhui & Zhong, Lingshu & Gao, Kun & Qu, Xiaobo & Pei, Mingyang, 2022. "Revealing the determinants of the intermodal transfer ratio between metro and bus systems considering spatial variations," Journal of Transport Geography, Elsevier, vol. 104(C).
    3. Nielsen, Otto Anker & Eltved, Morten & Anderson, Marie Karen & Prato, Carlo Giacomo, 2021. "Relevance of detailed transfer attributes in large-scale multimodal route choice models for metropolitan public transport passengers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 76-92.
    4. Yuan, Yalong & Yang, Min & Feng, Tao & Ma, Yafeng & Ren, Yifeng & Ruan, Xinpei, 2022. "Heterogeneity in the transfer time of air-rail intermodal passengers based on ticket booking data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 533-552.
    5. Liu, Yang & Feng, Tao & Shi, Zhuangbin & He, Mingwei, 2022. "Understanding the route choice behaviour of metro-bikeshare users," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 460-475.
    6. Edyta Przybylska & Marzena Kramarz & Katarzyna Dohn, 2023. "The Role of Stakeholders in Creating Mobility in Logistics Systems of Polish Cities," Sustainability, MDPI, vol. 15(3), pages 1-25, January.
    7. Marta Borowska-Stefańska & Michał Kowalski & Paulina Kurzyk & Miroslava Mikušová & Szymon Wiśniewski, 2021. "Privileging Electric Vehicles as an Element of Promoting Sustainable Urban Mobility—Effects on the Local Transport System in a Large Metropolis in Poland," Energies, MDPI, vol. 14(13), pages 1-24, June.
    8. Kowalska-Pyzalska, Anna & Kott, Joanna & Kott, Marek, 2020. "Why Polish market of alternative fuel vehicles (AFVs) is the smallest in Europe? SWOT analysis of opportunities and threats," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    9. Romero, Fernando & Gomez, Juan & Paez, Antonio & Vassallo, José Manuel, 2020. "Toll roads vs. Public transportation: A study on the acceptance of congestion-calming measures in Madrid," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 319-342.
    10. Marcin Jacek Kłos & Grzegorz Sierpiński, 2021. "Building a Model of Integration of Urban Sharing and Public Transport Services," Sustainability, MDPI, vol. 13(6), pages 1-26, March.
    11. Pan Wu & Jinlong Li & Yuzhuang Pian & Xiaochen Li & Zilin Huang & Lunhui Xu & Guilin Li & Ruonan Li, 2022. "How Determinants Affect Transfer Ridership between Metro and Bus Systems: A Multivariate Generalized Poisson Regression Analysis Method," Sustainability, MDPI, vol. 14(15), pages 1-31, August.
    12. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    13. Liao, Feixiong & Tian, Qiong & Arentze, Theo & Huang, Hai-Jun & Timmermans, Harry J.P., 2020. "Travel preferences of multimodal transport systems in emerging markets: The case of Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 250-266.
    14. Espino, Raquel & Román, Concepción, 2020. "Valuation of transfer for bus users: The case of Gran Canaria," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 131-144.
    15. Jiao Ye & Jun Chen & Hua Bai & Yifan Yue, 2018. "Analyzing Transfer Commuting Attitudes Using a Market Segmentation Approach," Sustainability, MDPI, vol. 10(7), pages 1-16, June.
    16. Rafidah Md Noor & Nadia Bella Gustiani Rasyidi & Tarak Nandy & Raenu Kolandaisamy, 2020. "Campus Shuttle Bus Route Optimization Using Machine Learning Predictive Analysis: A Case Study," Sustainability, MDPI, vol. 13(1), pages 1-24, December.
    17. Sanko, Nobuhiro, 2020. "Activity-end access/egress modal choices between stations and campuses located on a hillside," Research in Transportation Economics, Elsevier, vol. 83(C).
    18. Lindsey, Marshall & Schofer, Joseph L. & Durango-Cohen, Pablo & Gray, Kimberly A., 2010. "Relationship between proximity to transit and ridership for journey-to-work trips in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 697-709, November.
    19. Weliwitiya, Hesara & Rose, Geoffrey & Johnson, Marilyn, 2019. "Bicycle train intermodality: Effects of demography, station characteristics and the built environment," Journal of Transport Geography, Elsevier, vol. 74(C), pages 395-404.
    20. Yue Liu & Jun Chen & Weiguang Wu & Jiao Ye, 2019. "Typical Combined Travel Mode Choice Utility Model in Multimodal Transportation Network," Sustainability, MDPI, vol. 11(2), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:5922-:d:561333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.