IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v166y2022icp460-475.html
   My bibliography  Save this article

Understanding the route choice behaviour of metro-bikeshare users

Author

Listed:
  • Liu, Yang
  • Feng, Tao
  • Shi, Zhuangbin
  • He, Mingwei

Abstract

Understanding the determinants of the route choice behaviour on a multi-modal transit network of metro and shared bike is important to improve personalized multimodal travel services. This paper attempts to analyse the route choice behaviour of metro-bikeshare users considering passengers’ socio-economic attributes and perceived congestion which is approximated by load status. An abstract integrated metro-bikeshare network (IMBN) is built with virtual nodes by aggregating shared bike stations within the walkable distance and abstract routes by aggregating optional paths for each OD pair. Using the metro- and shared bike smart- card data from Nanjing, China, the route sets of metro-bikeshare users were extracted from the IMBN. A multinomial Logit model (MNL) was then applied to investigate the determinants of route choice behaviour for two types of users, namely “return-enter” and “exit-lease”, respectively. The results show that the models with the load status attributes have a better performance than the models without these attributes. We found the sensitivity of “exit-lease” users to the train crowding is significantly greater than that of the “return-enter” users. “Return-enter” users have a higher perception of out-of-vehicle travel time (OVTT) than that of in-vehicle travel time (IVT), while the “exit-lease” users have the opposite perception. Besides, the change rate of shared bike inventory, departure time and whether he or she is a regular user also have a significant impact on route choice behaviour. The findings can help policymakers and system operators to improve the services and the efficiency of the multimodal transportation system.

Suggested Citation

  • Liu, Yang & Feng, Tao & Shi, Zhuangbin & He, Mingwei, 2022. "Understanding the route choice behaviour of metro-bikeshare users," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 460-475.
  • Handle: RePEc:eee:transa:v:166:y:2022:i:c:p:460-475
    DOI: 10.1016/j.tra.2022.11.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856422002890
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2022.11.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Kyung Min & Hong, Sung-Pil & Ko, Suk-Joon & Kim, Dowon, 2015. "Does crowding affect the path choice of metro passengers?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 292-304.
    2. Yap, Menno & Cats, Oded, 2021. "Taking the path less travelled: Valuation of denied boarding in crowded public transport systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 1-13.
    3. Li, Wenxiang & Chen, Shawen & Dong, Jieshuang & Wu, Jingxian, 2021. "Exploring the spatial variations of transfer distances between dockless bike-sharing systems and metros," Journal of Transport Geography, Elsevier, vol. 92(C).
    4. Tirachini, Alejandro & Hurtubia, Ricardo & Dekker, Thijs & Daziano, Ricardo A., 2017. "Estimation of crowding discomfort in public transport: Results from Santiago de Chile," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 311-326.
    5. Piet Bovy & Sascha Hoogendoorn-Lanser, 2005. "Modelling route choice behaviour in multi-modal transport networks," Transportation, Springer, vol. 32(4), pages 341-368, July.
    6. Schakenbos, Rik & Paix, Lissy La & Nijenstein, Sandra & Geurs, Karst T., 2016. "Valuation of a transfer in a multimodal public transport trip," Transport Policy, Elsevier, vol. 46(C), pages 72-81.
    7. Weliwitiya, Hesara & Rose, Geoffrey & Johnson, Marilyn, 2019. "Bicycle train intermodality: Effects of demography, station characteristics and the built environment," Journal of Transport Geography, Elsevier, vol. 74(C), pages 395-404.
    8. Guo, Yuanyuan & He, Sylvia Y., 2021. "The role of objective and perceived built environments in affecting dockless bike-sharing as a feeder mode choice of metro commuting," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 377-396.
    9. Cheng, Long & Wang, Kailai & De Vos, Jonas & Huang, Jie & Witlox, Frank, 2022. "Exploring non-linear built environment effects on the integration of free-floating bike-share and urban rail transport: A quantile regression approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 175-187.
    10. Garcia-Martinez, Andres & Cascajo, Rocio & Jara-Diaz, Sergio R. & Chowdhury, Subeh & Monzon, Andres, 2018. "Transfer penalties in multimodal public transport networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PA), pages 52-66.
    11. David Hensher & William Greene, 2003. "The Mixed Logit model: The state of practice," Transportation, Springer, vol. 30(2), pages 133-176, May.
    12. Tomhave, Benjamin J. & Khani, Alireza, 2022. "Refined choice set generation and the investigation of multi-criteria transit route choice behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 484-500.
    13. Abrantes, Pedro A.L. & Wardman, Mark R., 2011. "Meta-analysis of UK values of travel time: An update," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(1), pages 1-17, January.
    14. Xinwei Ma & Shuai Zhang & Yuchuan Jin & Minqing Zhu & Yufei Yuan, 2021. "Identification of Metro-Bikeshare Transfer Trip Chains by Matching Docked Bikeshare and Metro Smartcards," Energies, MDPI, vol. 15(1), pages 1-19, December.
    15. Molin, Eric & Maat, Kees, 2015. "Bicycle parking demand at railway stations: Capturing price-walking trade offs," Research in Transportation Economics, Elsevier, vol. 53(C), pages 3-12.
    16. Marie Karen Anderson & Otto Anker Nielsen & Carlo Giacomo Prato, 2017. "Multimodal route choice models of public transport passengers in the Greater Copenhagen Area," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 221-245, September.
    17. Hu, Songhua & Chen, Mingyang & Jiang, Yuan & Sun, Wei & Xiong, Chenfeng, 2022. "Examining factors associated with bike-and-ride (BnR) activities around metro stations in large-scale dockless bikesharing systems," Journal of Transport Geography, Elsevier, vol. 98(C).
    18. Franco, Patrizia & Johnston, Ryan & McCormick, Ecaterina, 2020. "Demand responsive transport: Generation of activity patterns from mobile phone network data to support the operation of new mobility services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 244-266.
    19. Yanjie Ji & Xinwei Ma & Mingyuan Yang & Yuchuan Jin & Liangpeng Gao, 2018. "Exploring Spatially Varying Influences on Metro-Bikeshare Transfer: A Geographically Weighted Poisson Regression Approach," Sustainability, MDPI, vol. 10(5), pages 1-23, May.
    20. Shelat, Sanmay & Huisman, Raymond & van Oort, Niels, 2018. "Analysing the trip and user characteristics of the combined bicycle and transit mode," Research in Transportation Economics, Elsevier, vol. 69(C), pages 68-76.
    21. Gan, Zuoxian & Yang, Min & Zeng, Qingcheng & Timmermans, Harry J.P., 2021. "Associations between built environment, perceived walkability/bikeability and metro transfer patterns," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 171-187.
    22. Ma, Xinwei & Ji, Yanjie & Yang, Mingyuan & Jin, Yuchuan & Tan, Xu, 2018. "Understanding bikeshare mode as a feeder to metro by isolating metro-bikeshare transfers from smart card data," Transport Policy, Elsevier, vol. 71(C), pages 57-69.
    23. Meyer de Freitas, Lucas & Becker, Henrik & Zimmermann, Maëlle & Axhausen, Kay W., 2019. "Modelling intermodal travel in Switzerland: A recursive logit approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 200-213.
    24. Wu, Xueying & Lu, Yi & Gong, Yongxi & Kang, Yuhao & Yang, Linchuan & Gou, Zhonghua, 2021. "The impacts of the built environment on bicycle-metro transfer trips: A new method to delineate metro catchment area based on people's actual cycling space," Journal of Transport Geography, Elsevier, vol. 97(C).
    25. Guo, Zhan, 2011. "Mind the map! The impact of transit maps on path choice in public transit," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(7), pages 625-639, August.
    26. Hironori Kato & Yuichiro Kaneko & Masashi Inoue, 2010. "Comparative analysis of transit assignment: evidence from urban railway system in the Tokyo Metropolitan Area," Transportation, Springer, vol. 37(5), pages 775-799, September.
    27. Zhao, Pengjun & Li, Shengxiao, 2017. "Bicycle-metro integration in a growing city: The determinants of cycling as a transfer mode in metro station areas in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 46-60.
    28. Guo, Zhan & Wilson, Nigel H.M., 2011. "Assessing the cost of transfer inconvenience in public transport systems: A case study of the London Underground," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 91-104, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nielsen, Otto Anker & Eltved, Morten & Anderson, Marie Karen & Prato, Carlo Giacomo, 2021. "Relevance of detailed transfer attributes in large-scale multimodal route choice models for metropolitan public transport passengers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 76-92.
    2. Chen, Enhui & Stathopoulos, Amanda & Nie, Yu (Marco), 2022. "Transfer station choice in a multimodal transit system: An empirical study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 337-355.
    3. Hu, Songhua & Chen, Mingyang & Jiang, Yuan & Sun, Wei & Xiong, Chenfeng, 2022. "Examining factors associated with bike-and-ride (BnR) activities around metro stations in large-scale dockless bikesharing systems," Journal of Transport Geography, Elsevier, vol. 98(C).
    4. Ying Ni & Jiaqi Chen, 2020. "Exploring the Effects of the Built Environment on Two Transfer Modes for Metros: Dockless Bike Sharing and Taxis," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    5. Yap, Menno & Cats, Oded, 2021. "Taking the path less travelled: Valuation of denied boarding in crowded public transport systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 1-13.
    6. Xinwei Ma & Yanjie Ji & Yuchuan Jin & Jianbiao Wang & Mingjia He, 2018. "Modeling the Factors Influencing the Activity Spaces of Bikeshare around Metro Stations: A Spatial Regression Model," Sustainability, MDPI, vol. 10(11), pages 1-12, October.
    7. Marra, Alessio D. & Sun, Linghang & Corman, Francesco, 2022. "The impact of COVID-19 pandemic on public transport usage and route choice: Evidences from a long-term tracking study in urban area," Transport Policy, Elsevier, vol. 116(C), pages 258-268.
    8. Zhan, Zilin & Guo, Yuanyuan & Noland, Robert B. & He, Sylvia Y. & Wang, Yacan, 2023. "Analysis of links between dockless bikeshare and metro trips in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    9. Dongdong Feng & Lin Cheng & Mingyang Du, 2020. "Exploring the Impact of Dockless Bikeshare on Docked Bikeshare—A Case Study in London," Sustainability, MDPI, vol. 12(15), pages 1-18, July.
    10. Liao, Feixiong & Tian, Qiong & Arentze, Theo & Huang, Hai-Jun & Timmermans, Harry J.P., 2020. "Travel preferences of multimodal transport systems in emerging markets: The case of Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 250-266.
    11. Jiao Ye & Jun Chen & Hua Bai & Yifan Yue, 2018. "Analyzing Transfer Commuting Attitudes Using a Market Segmentation Approach," Sustainability, MDPI, vol. 10(7), pages 1-16, June.
    12. Lidong Zhu & Mujahid Ali & Elżbieta Macioszek & Mahdi Aghaabbasi & Amin Jan, 2022. "Approaching Sustainable Bike-Sharing Development: A Systematic Review of the Influence of Built Environment Features on Bike-Sharing Ridership," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    13. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    14. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    15. Yang Liu & Yanjie Ji & Tao Feng & Zhuangbin Shi, 2020. "Use Frequency of Metro–Bikeshare Integration: Evidence from Nanjing, China," Sustainability, MDPI, vol. 12(4), pages 1-16, February.
    16. Cheng, Long & Huang, Jie & Jin, Tanhua & Chen, Wendong & Li, Aoyong & Witlox, Frank, 2023. "Comparison of station-based and free-floating bikeshare systems as feeder modes to the metro," Journal of Transport Geography, Elsevier, vol. 107(C).
    17. Wu, Pan & Xu, Lunhui & Zhong, Lingshu & Gao, Kun & Qu, Xiaobo & Pei, Mingyang, 2022. "Revealing the determinants of the intermodal transfer ratio between metro and bus systems considering spatial variations," Journal of Transport Geography, Elsevier, vol. 104(C).
    18. Hadas, Yuval & Ranjitkar, Prakash, 2012. "Modeling public-transit connectivity with spatial quality-of-transfer measurements," Journal of Transport Geography, Elsevier, vol. 22(C), pages 137-147.
    19. Greg Rybarczyk & Richard R. Shaker, 2021. "Predicting Bicycle-on-Board Transit Choice in a University Environment," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    20. Jenelius, Erik, 2018. "Public transport experienced service reliability: Integrating travel time and travel conditions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 275-291.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:166:y:2022:i:c:p:460-475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.