IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v44y2010i9p697-709.html
   My bibliography  Save this article

Relationship between proximity to transit and ridership for journey-to-work trips in Chicago

Author

Listed:
  • Lindsey, Marshall
  • Schofer, Joseph L.
  • Durango-Cohen, Pablo
  • Gray, Kimberly A.

Abstract

The use of privately owned vehicles (POVs) contributes significantly to US energy consumption (EC) and greenhouse gas emissions (GHGe). Strategies for reducing POV use include shifting trips to other modes, particularly public transit. Choices to use transit are based on characteristics of travelers, their trips, and the quality of competing transportation services. Here we focus on the proximity of rail stations to trip origins/destinations as a factor affecting mode choice for work trips. Using household travel survey data from Chicago, we evaluate the profile of journey-to-work (JTW) trips, assessing mode share and potential for more travelers to use rail. For work trips having the origin/destination as close as 1 mile from rail transit stations, POVs were still the dominant travel mode, capturing as much as 61%, followed by rail use at 14%. This high degree of POV use coupled with the proportion of JTW trips within close proximity to rail stations indicated that at least some of these trips may be candidates for shifting from POV to rail. For example, shifting all work trips with both the origin/destination within 1 mile of commuter rail stations would potentially reduce the energy associated with all work-related POV driving trips by a maximum of 24%. Based on the analysis of trips having the origin and destination closest to train stations, a complete shift in mode from POV to train could exceed CO2 reduction goals targeted in the Chicago Climate Action Plan. This could occur with current settlement patterns and the use of existing infrastructure. However, changes in traveler behavior and possibly rail operation would be necessary, making policy to motivate this change essential.

Suggested Citation

  • Lindsey, Marshall & Schofer, Joseph L. & Durango-Cohen, Pablo & Gray, Kimberly A., 2010. "Relationship between proximity to transit and ridership for journey-to-work trips in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 697-709, November.
  • Handle: RePEc:eee:transa:v:44:y:2010:i:9:p:697-709
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(10)00094-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Siman & Lo, Hong K., 2008. "The impact of public transport policy on the viability and sustainability of mass railway transit - The Hong Kong experience," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(4), pages 563-576, May.
    2. Lane, Bradley W., 2008. "Significant characteristics of the urban rail renaissance in the United States: A discriminant analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(2), pages 279-295, February.
    3. Feitelson, Eran, 1994. "The potential of rail as an environmental solution: Setting the agenda," Transportation Research Part A: Policy and Practice, Elsevier, vol. 28(3), pages 209-221, May.
    4. Krygsman, Stephan & Dijst, Martin & Arentze, Theo, 2004. "Multimodal public transport: an analysis of travel time elements and the interconnectivity ratio," Transport Policy, Elsevier, vol. 11(3), pages 265-275, July.
    5. Brons, Martijn & Givoni, Moshe & Rietveld, Piet, 2009. "Access to railway stations and its potential in increasing rail use," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(2), pages 136-149, February.
    6. Poudenx, Pascal, 2008. "The effect of transportation policies on energy consumption and greenhouse gas emission from urban passenger transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(6), pages 901-909, July.
    7. Boarnet, Marlon G & Chalermpong, Saksith, 2003. "New Highways, House Prices, and Urban Development: A Case Study of Toll Roads in Orange County, CA," University of California Transportation Center, Working Papers qt2zd554cs, University of California Transportation Center.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Forsey, David & Habib, Khandker Nurul & Miller, Eric J. & Shalaby, Amer, 2013. "Evaluating the impacts of a new transit system on commuting mode choice using a GEV model estimated to revealed preference data: A case study of the VIVA system in York Region, Ontario," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 1-14.
    2. Kwoka, Gregory J. & Boschmann, E. Eric & Goetz, Andrew R., 2015. "The impact of transit station areas on the travel behaviors of workers in Denver, Colorado," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 277-287.
    3. Kamruzzaman, Md. & Baker, Douglas & Washington, Simon & Turrell, Gavin, 2013. "Residential dissonance and mode choice," Journal of Transport Geography, Elsevier, vol. 33(C), pages 12-28.
    4. Phani Kumar, P. & Ravi Sekhar, Ch. & Parida, Manoranjan, 2018. "Residential dissonance in TOD neighborhoods," Journal of Transport Geography, Elsevier, vol. 72(C), pages 166-177.
    5. Kębłowski, Wojciech & Dobruszkes, Frédéric & Boussauw, Kobe, 2022. "Moving past sustainable transport studies: Towards a critical perspective on urban transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 74-83.
    6. Jurkowski Wojciech & Smolarski Mateusz, 2021. "The influence of transport offer on passenger traffic in the railway transport system in a post-socialist country: case study of Poland," Bulletin of Geography. Socio-economic Series, Sciendo, vol. 53(53), pages 33-42, September.
    7. Lascano Kežić, Marcelo E. & Durango-Cohen, Pablo Luis, 2018. "New ridership for old rail: An analysis of changes in the utilization of Chicago's urban rail system, 1990–2008," Research in Transportation Economics, Elsevier, vol. 71(C), pages 17-26.
    8. Ibraeva, Anna & Van Wee, Bert & Correia, Gonçalo Homem de Almeida & Pais Antunes, António, 2021. "Longitudinal macro-analysis of car-use changes resulting from a TOD-type project: The case of Metro do Porto (Portugal)," Journal of Transport Geography, Elsevier, vol. 92(C).
    9. Shen, Qing & Chen, Peng & Pan, Haixiao, 2016. "Factors affecting car ownership and mode choice in rail transit-supported suburbs of a large Chinese city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 31-44.
    10. Arefeh Nasri & Lei Zhang, 2019. "How Urban Form Characteristics at Both Trip Ends Influence Mode Choice: Evidence from TOD vs. Non-TOD Zones of the Washington, D.C. Metropolitan Area," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    11. Sung, Hyungun & Choi, Keechoo & Lee, Sugie & Cheon, SangHyun, 2014. "Exploring the impacts of land use by service coverage and station-level accessibility on rail transit ridership," Journal of Transport Geography, Elsevier, vol. 36(C), pages 134-140.
    12. Diao, Mi, 2019. "Towards sustainable urban transport in Singapore: Policy instruments and mobility trends," Transport Policy, Elsevier, vol. 81(C), pages 320-330.
    13. Wojciech Keblowski & Frédéric Dobruszkes & Kobe Boussauw, 2022. "Moving past sustainable transport studies: Towards a critical perspective on urban transport," ULB Institutional Repository 2013/341191, ULB -- Universite Libre de Bruxelles.
    14. Dohyung Kim & Yongjin Ahn & Simon Choi & Kwangkoo Kim, 2016. "Sustainable Mobility: Longitudinal Analysis of Built Environment on Transit Ridership," Sustainability, MDPI, vol. 8(10), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weliwitiya, Hesara & Rose, Geoffrey & Johnson, Marilyn, 2019. "Bicycle train intermodality: Effects of demography, station characteristics and the built environment," Journal of Transport Geography, Elsevier, vol. 74(C), pages 395-404.
    2. Cheng, Yung-Hsiang & Liu, Kuo-Chu, 2012. "Evaluating bicycle-transit users’ perceptions of intermodal inconvenience," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1690-1706.
    3. Saiyad, Gulnazbanu & Srivastava, Minal & Rathwa, Dipak, 2022. "Exploring determinants of feeder mode choice behavior using Artificial Neural Network: Evidences from Delhi metro," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    4. Lachapelle, Ugo & Noland, Robert B., 2012. "Does the commute mode affect the frequency of walking behavior? The public transit link," Transport Policy, Elsevier, vol. 21(C), pages 26-36.
    5. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    6. Barros, Victor & Cruz, Carlos Oliveira & Júdice, Tomás & Sarmento, Joaquim Miranda, 2021. "Is taxation being effectively used to promote public transport in Europe?," Transport Policy, Elsevier, vol. 114(C), pages 215-224.
    7. Joeri F. P. Mil & Tessa S. Leferink & Jan Anne Annema & Niels Oort, 2021. "Insights into factors affecting the combined bicycle-transit mode," Public Transport, Springer, vol. 13(3), pages 649-673, October.
    8. Sharav, Nir & Givoni, Moshe & Shiftan, Yoram, 2019. "What transit service does the periphery need? A case study of Israel’s rural country," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 320-333.
    9. Meng Xu & Avishai Ceder & Ziyou Gao & Wei Guan, 2010. "Mass transit systems of Beijing: governance evolution and analysis," Transportation, Springer, vol. 37(5), pages 709-729, September.
    10. Liu, Yan & Wang, Siqin & Xie, Bin, 2019. "Evaluating the effects of public transport fare policy change together with built and non-built environment features on ridership: The case in South East Queensland, Australia," Transport Policy, Elsevier, vol. 76(C), pages 78-89.
    11. Pucher, John & Buehler, Ralph & Seinen, Mark, 2011. "Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 451-475, July.
    12. Lahoorpoor, Bahman & Levinson, David M., 2020. "Catchment if you can: The effect of station entrance and exit locations on accessibility," Journal of Transport Geography, Elsevier, vol. 82(C).
    13. Courtney Coughenour & Hanns de la Fuente-Mella & Alexander Paz, 2019. "Analysis of Self-Reported Walking for Transit in a Sprawling Urban Metropolitan Area in the Western U.S," Sustainability, MDPI, vol. 11(3), pages 1-16, February.
    14. Bayarma Alexander & Christa Hubers & Tim Schwanen & Martin Dijst & Dick Ettema, 2011. "Anything, Anywhere, Anytime? Developing Indicators to Assess the Spatial and Temporal Fragmentation of Activities," Environment and Planning B, , vol. 38(4), pages 678-705, August.
    15. Attahiru, Yusuf Babangida & Aziz, Md. Maniruzzaman A. & Kassim, Khairul Anuar & Shahid, Shamsuddin & Wan Abu Bakar, Wan Azelee & NSashruddin, Thanwa Filza & Rahman, Farahiyah Abdul & Ahamed, Mohd Imra, 2019. "A review on green economy and development of green roads and highways using carbon neutral materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 600-613.
    16. Zgheib, Najib & Abou-Zeid, Maya & Kaysi, Isam, 2020. "Modeling demand for ridesourcing as feeder for high capacity mass transit systems with an application to the planned Beirut BRT," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 70-91.
    17. Manout, Ouassim & Bonnel, Patrick & Bouzouina, Louafi, 2018. "Transit accessibility: A new definition of transit connectors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 88-100.
    18. Modarres, Ali, 2013. "Commuting and energy consumption: toward an equitable transportation policy," Journal of Transport Geography, Elsevier, vol. 33(C), pages 240-249.
    19. Sanko, Nobuhiro, 2020. "Activity-end access/egress modal choices between stations and campuses located on a hillside," Research in Transportation Economics, Elsevier, vol. 83(C).
    20. Yu Shen & Jinhua Zhao, 2017. "Capacity constrained accessibility of high-speed rail," Transportation, Springer, vol. 44(2), pages 395-422, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:44:y:2010:i:9:p:697-709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.