IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i9p3555-d351139.html
   My bibliography  Save this article

Dealing with Water Scarcity and Salinity: Adoption of Water Efficient Technologies and Management Practices by California Avocado Growers

Author

Listed:
  • Julie Reints

    (Department of Environmental Sciences, University of California, Riverside, CA 92521, USA)

  • Ariel Dinar

    (School of Public Policy, University of California, Riverside, CA 92521, USA)

  • David Crowley

    (Department of Environmental Sciences, University of California, Riverside, CA 92521, USA)

Abstract

The irrigated agriculture sector has been facing an increased scarcity of good quality water worldwide. Consequently, the sustainability of water intensive crops, such as avocado, is threatened when water becomes scarce and expensive, or when growers must use saline water supplies that reduce crop yields. A variety of irrigation technologies and water management practices are now recommended to help growers through times of limited water supplies and elevated salinity levels. To examine how growers adopt different practices and combinations of practices, we collected data from a sample of avocado growers in California. We used Kohonen self-organizing maps, and developed logit models to identify the most common bundles of technologies and management practices that growers are using to deal with water scarcity. We test the validity of the proposed bundles and factors affecting their adoption, using primary data obtained from a survey of California avocado growers at the height of the drought during 2012–2013. Results show that farm location, share of income from agricultural production, use of cooperative extension advice, and farmer characteristics, such as age and education, all play important roles in grower adoption of individual and bundled methods to adapt to water scarcity.

Suggested Citation

  • Julie Reints & Ariel Dinar & David Crowley, 2020. "Dealing with Water Scarcity and Salinity: Adoption of Water Efficient Technologies and Management Practices by California Avocado Growers," Sustainability, MDPI, vol. 12(9), pages 1-30, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3555-:d:351139
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/9/3555/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/9/3555/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ariel Dinar & Mark Campbell & David Zilberman, 1992. "Adoption of improved irrigation and drainage reduction technologies under limiting environmental conditions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 2(4), pages 373-398, July.
    2. César Salazar & John Rand, 2016. "Production risk and adoption of irrigation technology: evidence from small-scale farmers in Chile," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 25(1), pages 1-37, December.
    3. Chatterjee, Diti & Dinar, Ariel & González-Rivera, Gloria, 2019. "Impact of Agricultural Extension on Irrigated Agriculture Production and Water Use in California," Journal of the ASFMRA, American Society of Farm Managers and Rural Appraisers, vol. 2019.
    4. Mark B. Campbell & Ariel Dinar, 1993. "Farm organization and resource use," Agribusiness, John Wiley & Sons, Ltd., vol. 9(5), pages 465-480.
    5. Jeffrey H. Dorfman, 1996. "Modeling Multiple Adoption Decisions in a Joint Framework," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(3), pages 547-557.
    6. Pereira, Luis Santos & Oweis, Theib & Zairi, Abdelaziz, 2002. "Irrigation management under water scarcity," Agricultural Water Management, Elsevier, vol. 57(3), pages 175-206, December.
    7. Dinar, Ariel & Yaron, Dan, 1992. "Adoption and abandonment of irrigation technologies," Agricultural Economics, Blackwell, vol. 6(4), pages 315-332, April.
    8. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    9. Christopher Bryant & Barry Smit & Michael Brklacich & Thomas Johnston & John Smithers & Quentin Chjotti & Bhawan Singh, 2000. "Adaptation in Canadian Agriculture to Climatic Variability and Change," Climatic Change, Springer, vol. 45(1), pages 181-201, April.
    10. Ariel Dinar & Dan Yaron, 1992. "Adoption and abandonment of irrigation technologies," Agricultural Economics, International Association of Agricultural Economists, vol. 6(4), pages 315-332, April.
    11. Lambert, Dayton M. & Paudel, Krishna P. & Larson, James A., 2015. "Bundled Adoption of Precision Agriculture Technologies by Cotton Producers," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 40(2), pages 1-21, May.
    12. Phoebe Koundouri & Céline Nauges & Vangelis Tzouvelekas, 2006. "Technology Adoption under Production Uncertainty: Theory and Application to Irrigation Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(3), pages 657-670.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Yang & Zilberman, David, 2014. "The Economics of Water Project Capacities and Conservation Technologies," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169820, Agricultural and Applied Economics Association.
    2. Koundouri, Phoebe & Nauges, Céline & Tzouvelekas, Vangelis, 2009. "The Effect of Production Uncertainty and Information Dissemination of the Diffusion of Irrigation Technologies," TSE Working Papers 09-032, Toulouse School of Economics (TSE).
    3. Xie, Yang & Zilberman, David, 2015. "Water Storage Capacities versus Water Use Efficiency: Substitutes or Complements?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205439, Agricultural and Applied Economics Association.
    4. Konstantinos Chatzimichael & Dimitris Christopoulos & Spiro Stefanou & Vangelis Tzouvelekas, 2020. "Irrigation practices, water effectiveness and productivity measurement [Toward an understanding of technology adoption: risk, learning, and neighborhood effects]," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(2), pages 467-498.
    5. Konstantinos Chatzimichael & Dimitris Christopoulos & Spyro Stefanou & Vangelis Tzouvelekas, 2015. "Irrigation Technology Adoption, Water Effectiveness and Productivity Measurement," Working Papers 1506, University of Crete, Department of Economics.
    6. Gautam, Tej K. & Bhatta, Dependra, 2017. "Determinants Of Irrigation Technology Adoptions And Production Efficiency In Nepal’S Agricultural Sector," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252856, Southern Agricultural Economics Association.
    7. Dinar, Ariel & Keck, Andrew, 1997. "Private irrigation investment in Colombia: effects of violence, macroeconomic policy, and environmental conditions," Agricultural Economics, Blackwell, vol. 16(1), pages 1-15, March.
    8. Javad Torkamani & Shahrokh Shajari, 2008. "Adoption of New Irrigation Technology Under Production Risk," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(2), pages 229-237, February.
    9. Calzadilla, Alvaro & Rehdanz, Katrin & Tol, Richard S.J., 2008. "Water scarcity and the impact of improved irrigation management: A CGE analysis," Conference papers 331788, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    10. Li, Haoyang & Zhao, Jinhua, 2018. "What Drives (No) Adoption of New Irrigation Technologies: A Structural Dynamic Estimation Approach," 2018 Annual Meeting, August 5-7, Washington, D.C. 274474, Agricultural and Applied Economics Association.
    11. Palatnik, Ruslana & Shechter, Mordechai, 2008. "Can Climate Change Mitigation Policy be Beneficial for the Israeli Economy? A Computable General Equilibrium Analysis," Conference papers 331792, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    12. Celine Nauges & Phoebe Koundouri & Vangelis Tzouvelekas, 2004. "Endogenous Technology Adoption Under Production Risk: Theory and Application to Irrigation Technology," Working Papers 0411, University of Crete, Department of Economics.
    13. Alvaro Calzadilla & Katrin Rehdanz & Richard S.J. Tol, 2008. "The Eonomic Impact Of More Sustainable Water Use In Agriculture: A Computable General Equilibrium Analysis," Working Papers FNU-169, Research unit Sustainability and Global Change, Hamburg University, revised Dec 2008.
    14. Madhu Khanna, 2001. "Sequential Adoption of Site-Specific Technologies and its Implications for Nitrogen Productivity: A Double Selectivity Model," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(1), pages 35-51.
    15. Maria Berrittella & Katrin Rehdanz & Richard S.J. Tol, 2006. "The Economic Impact of the South-North Water Transfer Project in China: A Computable General Equilibrium Analysis," Working Papers 2006.154, Fondazione Eni Enrico Mattei.
    16. Mattoussi, Wided & Mattoussi, Foued & Larnaout, Afrah, 2023. "Optimal subsidization for the adoption of new irrigation technologies," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1126-1141.
    17. Margarita Genius & Phoebe Koundouri & Celine Nauges & Vangelis TZOUVELEKAS, 2013. "Information Spillovers in Irrigation Technology Diffusion: Social Learning, Extension Visits and Spatial Effects," DEOS Working Papers 1319, Athens University of Economics and Business.
    18. Gonzalo Villa‐Cox & Francesco Cavazza & Cristian Jordan & Mijail Arias‐Hidalgo & Paúl Herrera & Ramon Espinel & Davide Viaggi & Stijn Speelman, 2021. "Understanding constraints on private irrigation adoption decisions under uncertainty in data constrained settings: A novel empirical approach tested on Ecuadorian Cocoa cultivations," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 985-999, November.
    19. -, 2015. "La economía del cambio climático en América Latina y el Caribe: paradojas y desafíos del desarrollo sostenible," Libros y Documentos Institucionales, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), number 37310 edited by Cepal, September.
    20. Berrittella, Maria & Rehdanz, Katrin & Roson, Roberto & Tol, Richard S.J., 2007. "The Economic Impact of Water Taxes: A Computable General Equilibrium Analysis with an International Data Set," Conference papers 331655, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3555-:d:351139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.