IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i4p1474-d321381.html
   My bibliography  Save this article

Assessment of Genotypes and Management Strategies to Improve Resilience of Winter Wheat Production

Author

Listed:
  • Chunlei Wang

    (College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China)

  • Liping Feng

    (College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China)

  • Lu Wu

    (College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China)

  • Chen Cheng

    (College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China)

  • Yizhuo Li

    (College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China)

  • Jintao Yan

    (College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China)

  • Jiachen Gao

    (College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China)

  • Fu Chen

    (College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China)

Abstract

Climate is a main factor that influences the winter wheat production. Changing the crop cultivars and adjusting the sowing dates are used as strategies to adapt to climate change. First, we evaluated the simulation ability of the Decision Support System for Agro-technology Transfer (DSSAT) CERES wheat model based on the experimental data with varied sowing dates and cultivars. Second, we designed optimal cultivars in three different environmental conditions with the highest grain yield in the North China Plain (NCP) based on model sensitivity analysis. Furthermore, we optimized the sowing dates for three sites with the above-derived cultivar parameters. The results showed that the DSSAT–CERES wheat model was suitable for winter wheat simulation after calibration and validation with a Normalized Root Mean Square Error (NRMSE) between 0.9% and 9.5% for phenology, 6.8% and 17.8% for above ground biomass, and 4.6% and 9.7% for grain yield. The optimal cultivars significantly prolonged the wheat growth duration by 14.1, 27.5, and 24.4 days at the Shangzhuang (SZ), Xingtai (XT), and Zhumadian (ZMD) sites compared with current cultivars, respectively. The vegetative growth duration (from sowing to anthesis) was prolonged 18.4 and 12.2 days at the XT and ZMD sites significantly, while shortened 0.81 days at the SZ site. The grain yield could be potentially improved by 29.5%, 86.8%, and 34.6% at the SZ, XT, and ZMD sites using the optimal cultivars, respectively. Similarly, the improvement of aboveground biomass at three sites was 5.5%, 47.1%, and 12.7%, respectively. Based on the guaranteed rate and analysis of variance, we recommended a later sowing date (from 15 September to 20 October) at the SZ and ZMD sites, and 15 September to 15 October at the XT site. In addition, the methodology of this study could be expanded to other regions and possibly to other crops.

Suggested Citation

  • Chunlei Wang & Liping Feng & Lu Wu & Chen Cheng & Yizhuo Li & Jintao Yan & Jiachen Gao & Fu Chen, 2020. "Assessment of Genotypes and Management Strategies to Improve Resilience of Winter Wheat Production," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1474-:d:321381
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/4/1474/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/4/1474/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andarzian, B. & Bannayan, M. & Steduto, P. & Mazraeh, H. & Barati, M.E. & Barati, M.A. & Rahnama, A., 2011. "Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran," Agricultural Water Management, Elsevier, vol. 100(1), pages 1-8.
    2. Attia, Ahmed & Rajan, Nithya & Xue, Qingwu & Nair, Shyam & Ibrahim, Amir & Hays, Dirk, 2016. "Application of DSSAT-CERES-Wheat model to simulate winter wheat response to irrigation management in the Texas High Plains," Agricultural Water Management, Elsevier, vol. 165(C), pages 50-60.
    3. A. J. Challinor & A.-K. Koehler & J. Ramirez-Villegas & S. Whitfield & B. Das, 2016. "Current warming will reduce yields unless maize breeding and seed systems adapt immediately," Nature Climate Change, Nature, vol. 6(10), pages 954-958, October.
    4. Yujie Liu & Qiaomin Chen & Quansheng Ge & Junhu Dai & Yue Dou, 2018. "Effects of climate change and agronomic practice on changes in wheat phenology," Climatic Change, Springer, vol. 150(3), pages 273-287, October.
    5. David B. Lobell & Graeme L. Hammer & Greg McLean & Carlos Messina & Michael J. Roberts & Wolfram Schlenker, 2013. "The critical role of extreme heat for maize production in the United States," Nature Climate Change, Nature, vol. 3(5), pages 497-501, May.
    6. Senthilkumar, Kalimuthu & Bergez, Jacques-Eric & Leenhardt, Delphine, 2015. "Can farmers use maize earliness choice and sowing dates to cope with future water scarcity? A modelling approach applied to south-western France," Agricultural Water Management, Elsevier, vol. 152(C), pages 125-134.
    7. Zhang, Xiaoyu & Zhang, Xiying & Liu, Xiuwei & Shao, Liwei & Sun, Hongyong & Chen, Suying, 2015. "Incorporating root distribution factor to evaluate soil water status for winter wheat," Agricultural Water Management, Elsevier, vol. 153(C), pages 32-41.
    8. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    9. Timsina, J. & Godwin, D. & Humphreys, E. & Yadvinder-Singh & Bijay-Singh & Kukal, S.S. & Smith, D., 2008. "Evaluation of options for increasing yield and water productivity of wheat in Punjab, India using the DSSAT-CSM-CERES-Wheat model," Agricultural Water Management, Elsevier, vol. 95(9), pages 1099-1110, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Si, Zhuanyun & Zain, Muhammad & Li, Shuang & Liu, Junming & Liang, Yueping & Gao, Yang & Duan, Aiwang, 2021. "Optimizing nitrogen application for drip-irrigated winter wheat using the DSSAT-CERES-Wheat model," Agricultural Water Management, Elsevier, vol. 244(C).
    2. Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
    3. Kothari, Kritika & Ale, Srinivasulu & Bordovsky, James P. & Thorp, Kelly R. & Porter, Dana O. & Munster, Clyde L., 2019. "Simulation of efficient irrigation management strategies for grain sorghum production over different climate variability classes," Agricultural Systems, Elsevier, vol. 170(C), pages 49-62.
    4. Zhao, Jie & Han, Tong & Wang, Chong & Jia, Hao & Worqlul, Abeyou W. & Norelli, Nicole & Zeng, Zhaohai & Chu, Qingquan, 2020. "Optimizing irrigation strategies to synchronously improve the yield and water productivity of winter wheat under interannual precipitation variability in the North China Plain," Agricultural Water Management, Elsevier, vol. 240(C).
    5. Quan, Hao & Ding, Dianyuan & Wu, Lihong & Qiao, Ruonan & Dong, Qin'ge & Zhang, Tibin & Feng, Hao & Wu, Lianhai & Siddique, Kadambot H.M., 2022. "Future climate change impacts on mulched maize production in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 266(C).
    6. Ma, Haijiao & Wang, Jianliang & Liu, Tao & Guo, Yahui & Zhou, Yang & Yang, Tianle & Zhang, Weijun & Sun, Chengming, 2023. "Time series global sensitivity analysis of genetic parameters of CERES-maize model under water stresses at different growth stages," Agricultural Water Management, Elsevier, vol. 275(C).
    7. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    8. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    9. Bu, Lingduo & Chen, Xinping & Li, Shiqing & Liu, Jianliang & Zhu, Lin & Luo, Shasha & Lee Hill, Robert & Zhao, Ying, 2015. "The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L.) in northwestern China," Agricultural Water Management, Elsevier, vol. 148(C), pages 1-9.
    10. Wenfeng Chi & Yuanyuan Zhao & Wenhui Kuang & Tao Pan & Tu Ba & Jinshen Zhao & Liang Jin & Sisi Wang, 2021. "Impact of Cropland Evolution on Soil Wind Erosion in Inner Mongolia of China," Land, MDPI, vol. 10(6), pages 1-16, June.
    11. Xu, Ying & Findlay, Christopher, 2019. "Farmers’ constraints, governmental support and climate change adaptation: Evidence from Guangdong Province, China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), October.
    12. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    13. Paresh B. Shirsath & Vinay Kumar Sehgal & Pramod K. Aggarwal, 2020. "Downscaling Regional Crop Yields to Local Scale Using Remote Sensing," Agriculture, MDPI, vol. 10(3), pages 1-14, March.
    14. Yuhong Shuai & Liming Yao, 2021. "Adjustable Robust Optimization for Multi-Period Water Allocation in Droughts Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4043-4065, September.
    15. Timothy Neal & Michael Keane, 2018. "The Impact of Climate Change on U.S. Agriculture: The Roles of Adaptation Techniques and Emissions Reductions," Discussion Papers 2018-08, School of Economics, The University of New South Wales.
    16. Emediegwu, Lotanna E. & Wossink, Ada & Hall, Alastair, 2022. "The impacts of climate change on agriculture in sub-Saharan Africa: A spatial panel data approach," World Development, Elsevier, vol. 158(C).
    17. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng & Zhang, Xiaotao, 2018. "Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 438-450.
    18. Balázs Varga & Zsuzsanna Farkas & Emese Varga-László & Gyula Vida & Ottó Veisz, 2022. "Elevated Atmospheric CO 2 Concentration Influences the Rooting Habits of Winter-Wheat ( Triticum aestivum L.) Varieties," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    19. Shekhar, Ankit & Shapiro, Charles A., 2022. "Prospective crop yield and income return based on a retrospective analysis of a long-term rainfed agriculture experiment in Nebraska," Agricultural Systems, Elsevier, vol. 198(C).
    20. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1474-:d:321381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.